SEARCH

SEARCH BY CITATION

  • 1
    Lolli, F., Rovero, P., Chelli, M. and Papini, A. M., Toward biomarkers in multiple sclerosis: new advances. Expert Rev. Neurother. 2006. 6: 781794.
  • 2
    Klareskog, L., Padyukov, L., Ronnelid, J. and Alfredsson, L., Genes, environment and immunity in the development of rheumatoid arthritis. Curr. Opin. Immunol. 2006. 18: 650655.
  • 3
    Wicker, L. S., Todd, J. A. and Peterson, L. B., Genetic control of autoimmune diabetes in the NOD mouse. Annu. Rev. Immunol. 1995. 13: 179200.
  • 4
    Lang, K. S., Recher, M., Junt, T., Navarini, A. A., Harris, N. L., Freigang, S., Odermatt, B. et al., Toll-like receptor engagement converts T-cell autoreactivity into overt autoimmune disease. Nat. Med. 2005. 11: 138145.
  • 5
    Lang, K. S., Georgiev, P., Recher, M., Navarini, A. A., Bergthaler, A., Heikenwalder, M., Harris, N. L. et al., Immunoprivileged status of the liver is controlled by Toll-like receptor 3 signaling. J. Clin. Invest. 2006. 116: 24562463.
  • 6
    Kubo, M., Hanada, T. and Yoshimura, A., Suppressors of cytokine signaling and immunity. Nat. Immunol. 2003. 4: 11691176.
  • 7
    Flodstrom-Tullberg, M., Yadav, D., Hagerkvist, R., Tsai, D., Secrest, P., Stotland, A. and Sarvetnick, N., Target cell expression of suppressor of cytokine signaling-1 prevents diabetes in the NOD mouse. Diabetes 2003. 52: 26962700.
  • 8
    Chong, M. M., Chen, Y., Darwiche, R., Dudek, N. L., Irawaty, W., Santamaria, P., Allison, J. et al., Suppressor of cytokine signaling-1 overexpression protects pancreatic beta cells from CD8+ T cell-mediated autoimmune destruction. J. Immunol. 2004. 172: 57145721.
  • 9
    Charo, I. F. and Ransohoff, R. M., The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med. 2006. 354: 610621.
  • 10
    Cardozo, A. K., Proost, P., Gysemans, C., Chen, M. C., Mathieu, C. and Eizirik, D. L., IL-1beta and IFN-gamma induce the expression of diverse chemokines and IL-15 in human and rat pancreatic islet cells, and in islets from pre-diabetic NOD mice. Diabetologia 2003. 46: 255266.
  • 11
    Chen, M. C., Proost, P., Gysemans, C., Mathieu, C. and Eizirik, D. L., Monocyte chemoattractant protein-1 is expressed in pancreatic islets from prediabetic NOD mice and in interleukin-1 beta-exposed human and rat islet cells. Diabetologia 2001. 44: 325332.
  • 12
    Frigerio, S., Junt, T., Lu, B., Gerard, C., Zumsteg, U., Hollander, G. A. and Piali, L., Beta cells are responsible for CXCR3-mediated T-cell infiltration in insulitis. Nat. Med. 2002. 8: 14141420.
  • 13
    van Loo, G., De Lorenzi, R., Schmidt, H., Huth, M., Mildner, A., Schmidt-Supprian, M., Lassmann, H. et al., Inhibition of transcription factor NF-kappaB in the central nervous system ameliorates autoimmune encephalomyelitis in mice. Nat. Immunol. 2006. 7: 954961.
  • 14
    Tan, S. M., Xu, D., Roschke, V., Perry, J. W., Arkfeld, D. G., Ehresmann, G. R., Migone, T. S. et al., Local production of B lymphocyte stimulator protein and APRIL in arthritic joints of patients with inflammatory arthritis. Arthritis Rheum. 2003. 48: 982992.
  • 15
    Groom, J., Kalled, S. L., Cutler, A. H., Olson, C., Woodcock, S. A., Schneider, P., Tschopp, J. et al., Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjogren's syndrome. J. Clin. Invest. 2002. 109: 5968.
  • 16
    Krumbholz, M., Theil, D., Derfuss, T., Rosenwald, A., Schrader, F., Monoranu, C. M., Kalled, S. L. et al., BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J. Exp. Med. 2005. 201: 195200.
  • 17
    Sutherland, A. P., Mackay, F. and Mackay, C. R., Targeting BAFF: Immunomodulation for autoimmune diseases and lymphomas. Pharmacol. Ther. 2006
  • 18
    McInnes, I. B. and Gracie, J. A., Interleukin-15: a new cytokine target for the treatment of inflammatory diseases. Curr. Opin. Pharmacol. 2004. 4: 392397.
  • 19
    Maiuri, L., Ciacci, C., Auricchio, S., Brown, V., Quaratino, S. and Londei, M., Interleukin 15 mediates epithelial changes in celiac disease. Gastroenterology 2000. 119: 9961006.
  • 20
    Mention, J. J., Ben Ahmed, M., Begue, B., Barbe, U., Verkarre, V., Asnafi, V., Colombel, J. F. et al., Interleukin 15: a key to disrupted intraepithelial lymphocyte homeostasis and lymphomagenesis in celiac disease. Gastroenterology 2003. 125: 730745.
  • 21
    Stegall, T. and Krolick, K. A., Myocytes respond in vivo to an antibody reactive with the acetylcholine receptor by upregulating interleukin-15: an interferon-gamma activator with the potential to influence the severity and course of experimental myasthenia gravis. J. Neuroimmunol. 2001. 119: 377386.
  • 22
    Hamilton-Williams, E. E., Palmer, S. E., Charlton, B. and Slattery, R. M., Beta cell MHC class I is a late requirement for diabetes. Proc. Natl. Acad. Sci. USA 2003. 100: 66886693.
  • 23
    Vives-Pi, M., Armengol, M. P., Alcalde, L., Costa, M., Somoza, N., Vargas, F., Jaraquemada, D. and Pujol-Borrell, R., Expression of transporter associated with antigen processing-1 in the endocrine cells of human pancreatic islets: effect of cytokines and evidence of hyperexpression in IDDM. Diabetes 1996. 45: 779788.
  • 24
    Vives-Pi, M., Vargas, F., James, R. F., Trowsdale, J., Costa, M., Sospedra, M., Somoza, N. et al., Proteasome subunits, low-molecular-mass polypeptides 2 and 7 are hyperexpressed by target cells in autoimmune thyroid disease but not in insulin-dependent diabetes mellitus: implications for autoimmunity. Tissue Antigens 1997. 50: 153163.
  • 25
    Amrani, A., Verdaguer, J., Serra, P., Tafuro, S., Tan, R. and Santamaria, P., Progression of autoimmune diabetes driven by avidity maturation of a T-cell population. Nature 2000. 406: 739742.
  • 26
    Dudek, N. L., Thomas, H. E., Mariana, L., Sutherland, R. M., Allison, J., Estella, E., Angstetra, E. et al., Cytotoxic T-cells from T-cell receptor transgenic NOD8.3 mice destroy beta-cells via the perforin and Fas pathways. Diabetes 2006. 55: 24122418.
  • 27
    Raulet, D. H., Roles of the NKG2D immunoreceptor and its ligands. Nat. Rev. Immunol. 2003. 3: 781790.
  • 28
    Meresse, B., Chen, Z., Ciszewski, C., Tretiakova, M., Bhagat, G., Krausz, T. N., Raulet, D. H. et al., Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity 2004. 21: 357366.
  • 29
    Hue, S., Mention, J. J., Monteiro, R. C., Zhang, S., Cellier, C., Schmitz, J., Verkarre, V. et al., A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 2004. 21: 367377.
  • 30
    Groh, V., Bruhl, A., El-Gabalawy, H., Nelson, J. L. and Spies, T., Stimulation of T cell autoreactivity by anomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 2003. 100: 94529457.
  • 31
    Ogasawara, K., Hamerman, J. A., Ehrlich, L. R., Bour-Jordan, H., Santamaria, P., Bluestone, J. A. and Lanier, L. L., NKG2D blockade prevents autoimmune diabetes in NOD mice. Immunity 2004. 20: 757767.
  • 32
    Ansari, M. J., Salama, A. D., Chitnis, T., Smith, R. N., Yagita, H., Akiba, H., Yamazaki, T. et al., The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J. Exp. Med. 2003. 198: 6369.
  • 33
    Liang, S. C., Latchman, Y. E., Buhlmann, J. E., Tomczak, M. F., Horwitz, B. H., Freeman, G. J. and Sharpe, A. H., Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur. J. Immunol. 2003. 33: 27062716.
  • 34
    Keir, M. E., Liang, S. C., Guleria, I., Latchman, Y. E., Qipo, A., Albacker, L. A., Koulmanda, M. et al., Tissue expression of PD-L1 mediates peripheral T cell tolerance. J. Exp. Med. 2006. 203: 883895.
  • 35
    Liu, Y., Teige, I., Birnir, B. and Issazadeh-Navikas, S., Neuron-mediated generation of regulatory T cells from encephalitogenic T cells suppresses EAE. Nat. Med. 2006. 12: 518525.
  • 36
    Barbe-Tuana, F. M., Klein, D., Ichii, H., Berman, D. M., Coffey, L., Kenyon, N. S., Ricordi, C. and Pastori, R. L., CD40-CD40 ligand interaction activates proinflammatory pathways in pancreatic islets. Diabetes 2006. 55: 24372445.
  • 37
    Hoek, R. M., Ruuls, S. R., Murphy, C. A., Wright, G. J., Goddard, R., Zurawski, S. M., Blom, B. et al., Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 2000. 290: 17681771.
  • 38
    Rosenblum, M. D., Olasz, E. B., Yancey, K. B., Woodliff, J. E., Lazarova, Z., Gerber, K. A. and Truitt, R. L., Expression of CD200 on epithelial cells of the murine hair follicle: a role in tissue-specific immune tolerance? J. Invest. Dermatol. 2004. 123: 880887.
  • 39
    Banerjee, D. and Dick, A. D., Blocking CD200-CD200 receptor axis augments NOS-2 expression and aggravates experimental autoimmune uveoretinitis in Lewis rats. Ocul. Immunol. Inflamm. 2004. 12: 115125.
  • 40
    Broderick, C., Hoek, R. M., Forrester, J. V., Liversidge, J., Sedgwick, J. D. and Dick, A. D., Constitutive retinal CD200 expression regulates resident microglia and activation state of inflammatory cells during experimental autoimmune uveoretinitis. Am. J. Pathol 2002. 161: 16691677.
  • 41
    Barclay, A. N., Wright, G. J., Brooke, G. and Brown, M. H., CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol. 2002. 23: 285290.
  • 42
    Zhang, S. and Phillips, J. H., Identification of tyrosine residues crucial for CD200R-mediated inhibition of mast cell activation. J. Leukoc. Biol. 2006. 79: 363368.
  • 43
    Dick, A. D., Carter, D., Robertson, M., Broderick, C., Hughes, E., Forrester, J. V. and Liversidge, J., Control of myeloid activity during retinal inflammation. J. Leukoc. Biol. 2003. 74: 161166.
  • 44
    Anderson, M. S., Venanzi, E. S., Klein, L., Chen, Z., Berzins, S. P., Turley, S. J., von Boehmer, H. et al., Projection of an immunological self shadow within the thymus by the aire protein. Science 2002. 298: 13951401.
  • 45
    Ochs, H. D., Ziegler, S. F. and Torgerson, T. R., FOXP3 acts as a rheostat of the immune response. Immunol. Rev. 2005. 203: 156164.
  • 46
    Ueda, H., Howson, J. M., Esposito, L., Heward, J., Snook, H., Chamberlain, G., Rainbow, D. B. et al., Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 2003. 423: 506511.
  • 47
    Bottini, N., Vang, T., Cucca, F. and Mustelin, T., Role of PTPN22 in type 1 diabetes and other autoimmune diseases. Semin. Immunol. 2006. 18: 207213.
  • 48
    Liao, L., Sindhwani, R., Rojkind, M., Factor, S., Leinwand, L. and Diamond, B., Antibody-mediated autoimmune myocarditis depends on genetically determined target organ sensitivity. J. Exp. Med. 1995. 181: 11231131.
  • 49
    Mathews, C. E., Graser, R. T., Savinov, A., Serreze, D. V. and Leiter, E. H., Unusual resistance of ALR/Lt mouse beta cells to autoimmune destruction: Role for beta cell-expressed resistance determinants. Proc. Natl. Acad. Sci. USA 2001. 98: 235240.
  • 50
    Mayo, S., Kohler, W., Kumar, V. and Quinn, A., Insulin-dependent diabetes loci Idd5 and Idd9 increase sensitivity to experimental autoimmune encephalomyelitis. Clin. Immunol. 2006. 118: 219228.
  • 51
    Roivainen, M., Enteroviruses: new findings on the role of enteroviruses in type 1 diabetes. Int. J. Biochem. Cell Biol. 2006. 38: 721725.
  • 52
    Flodstrom, M., Maday, A., Balakrishna, D., Cleary, M. M., Yoshimura, A. and Sarvetnick, N., Target cell defense prevents the development of diabetes after viral infection. Nat. Immunol. 2002. 3: 373382.
  • 53
    Flodstrom, M., Tsai, D., Fine, C., Maday, A. and Sarvetnick, N., Diabetogenic potential of human pathogens uncovered in experimentally permissive beta-cells. Diabetes 2003. 52: 20252034.
  • 54
    Yasukawa, H., Yajima, T., Duplain, H., Iwatate, M., Kido, M., Hoshijima, M., Weitzman, M. D. et al., The suppressor of cytokine signaling-1 (SOCS1) is a novel therapeutic target for enterovirus-induced cardiac injury. J. Clin. Invest. 2003. 111: 469478.
  • 55
    Binstadt, B. A., Patel, P. R., Alencar, H., Nigrovic, P. A., Lee, D. M., Mahmood, U., Weissleder, R. et al., Particularities of the vasculature can promote the organ specificity of autoimmune attack. Nat. Immunol. 2006. 7: 284292.
  • 56
    Matsumoto, I., Lee, D. M., Goldbach-Mansky, R., Sumida, T., Hitchon, C. A., Schur, P. H., Anderson, R. J. et al., Low prevalence of antibodies to glucose-6-phosphate isomerase in patients with rheumatoid arthritis and a spectrum of other chronic autoimmune disorders. Arthritis Rheum. 2003. 48: 944954.
  • 57
    Herve, C. A., Wait, R. and Venables, P. J., Glucose-6-phosphate isomerase is not a specific autoantigen in rheumatoid arthritis. Rheumatology (Oxford) 2003. 42: 986988.
  • 58
    Wipke, B. T., Wang, Z., Kim, J., McCarthy, T. J. and Allen, P. M., Dynamic visualization of a joint-specific autoimmune response through positron emission tomography. Nat. Immunol. 2002. 3: 366372.
  • 59
    Matsumoto, I., Maccioni, M., Lee, D. M., Maurice, M., Simmons, B., Brenner, M., Mathis, D. and Benoist, C., How antibodies to a ubiquitous cytoplasmic enzyme may provoke joint-specific autoimmune disease. Nat. Immunol. 2002. 3: 360365.
  • 60
    Mandik-Nayak, L., Wipke, B. T., Shih, F. F., Unanue, E. R. and Allen, P. M., Despite ubiquitous autoantigen expression, arthritogenic autoantibody response initiates in the local lymph node. Proc. Natl. Acad. Sci. USA 2002. 99: 1436814373.
  • 61
    van Boekel, M. A., Vossenaar, E. R., van den Hoogen, F. H. and van Venrooij, W. J., Autoantibody systems in rheumatoid arthritis: specificity, sensitivity and diagnostic value. Arthritis Res. 2002. 4: 8793.
  • 62
    van Venrooij, W. J. and Pruijn, G. J., Citrullination: a small change for a protein with great consequences for rheumatoid arthritis. Arthritis Res. 2000. 2: 249251.
  • 63
    Gyorgy, B., Toth, E., Tarcsa, E., Falus, A. and Buzas, E. I., Citrullination: a posttranslational modification in health and disease. Int. J. Biochem. Cell Biol. 2006. 38: 16621677.
  • 64
    Fleming, S. D. and Tsokos, G. C., Complement, natural antibodies, autoantibodies and tissue injury. Autoimmun. Rev. 2006. 5: 8992.
  • 65
    Yamada, R., Suzuki, A., Chang, X. and Yamamoto, K., Citrullinated proteins in rheumatoid arthritis. Front. Biosci. 2005. 10: 5464.
  • 66
    Sollid, L. M., Coeliac disease: dissecting a complex inflammatory disorder. Nat. Rev. Immunol. 2002. 2: 647655.
  • 67
    Kurien, B. T., Hensley, K., Bachmann, M. and Scofield, R. H., Oxidatively modified autoantigens in autoimmune diseases. Free Radic. Biol. Med. 2006. 41: 549556.
  • 68
    Descamps, F. J., Van den Steen, P. E., Nelissen, I., Van Damme, J. and Opdenakker, G., Remnant epitopes generate autoimmunity: from rheumatoid arthritis and multiple sclerosis to diabetes. Adv. Exp. Med. Biol. 2003. 535: 6977.
  • 69
    Amantea, G., Cammarano, M., Zefferino, L., Martin, A., Romito, G., Piccirillo, M. and Gentile, V., Molecular mechanisms responsible for the involvement of tissue transglutaminase in human diseases: Celiac disease. Front. Biosci. 2006. 11: 249255.
  • 70
    Iwamoto, T., Ikari, K., Nakamura, T., Kuwahara, M., Toyama, Y., Tomatsu, T., Momohara, S. and Kamatani, N., Association between PADI4 and rheumatoid arthritis: a meta-analysis. Rheumatology (Oxford) 2006. 45: 804807.
  • 71
    McManus, C., Berman, J. W., Brett, F. M., Staunton, H., Farrell, M. and Brosnan, C. F., MCP-1, MCP-2 and MCP-3 expression in multiple sclerosis lesions: an immunohistochemical and in situ hybridization study. J. Neuroimmunol. 1998. 86: 2029.
  • 72
    Sorensen, T. L., Tani, M., Jensen, J., Pierce, V., Lucchinetti, C., Folcik, V. A., Qin, S. et al., Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J. Clin. Invest. 1999. 103: 807815.
  • 73
    Van Der Voorn, P., Tekstra, J., Beelen, R. H., Tensen, C. P., Van Der Valk, P. and De Groot, C. J., Expression of MCP-1 by reactive astrocytes in demyelinating multiple sclerosis lesions. Am. J. Pathol 1999. 154: 4551.
  • 74
    Salomonsson, S., Larsson, P., Tengner, P., Mellquist, E., Hjelmstrom, P. and Wahren-Herlenius, M., Expression of the B cell-attracting chemokine CXCL13 in the target organ and autoantibody production in ectopic lymphoid tissue in the chronic inflammatory disease Sjogren's syndrome. Scand. J. Immunol. 2002. 55: 336342.
  • 75
    Garcia-Lopez, M. A., Sancho, D., Sanchez-Madrid, F. and Marazuela, M., Thyrocytes from autoimmune thyroid disorders produce the chemokines IP-10 and Mig and attract CXCR3+ lymphocytes. J. Clin. Endocrinol. Metab. 2001. 86: 50085016.
  • 76
    Foulis, A. K., Farquharson, M. A. and Meager, A., Immunoreactive alpha-interferon in insulin-secreting beta cells in type 1 diabetes mellitus. Lancet 1987. 2: 14231427.
  • 77
    Sawai, H., Park, Y. W., Roberson, J., Imai, T., Goronzy, J. J. and Weyand, C. M., T cell costimulation by fractalkine-expressing synoviocytes in rheumatoid arthritis. Arthritis Rheum. 2005. 52: 13921401.
  • 78
    Ohata, J., Zvaifler, N. J., Nishio, M., Boyle, D. L., Kalled, S. L., Carson, D. A. and Kipps, T. J., Fibroblast-like synoviocytes of mesenchymal origin express functional B cell-activating factor of the TNF family in response to proinflammatory cytokines. J. Immunol. 2005. 174: 864870.