• 1
    Nakase, K., Hara, M., Kozuka, T., Tanimoto, K. and Nawa, Y., Bone marrow transplantation from unrelated donors for patients with adult T-cell leukaemia/lymphoma. Bone Marrow Transplant. 2006. 37: 4144.
  • 2
    van Bekkum, D. W., Stem cell transplantation for autoimmune disorders. Preclinical experiments. Best Pract. Res. Clin. Haematol. 2004. 17: 201222.
  • 3
    Adams, K. M., Holmberg, L. A., Leisenring, W., Fefer, A., Guthrie, K. A., Tylee, T. S., McDonald, G. B. et al., Risk factors for syngeneic graft-versus-host disease after adult hematopoietic cell transplantation. Blood 2004. 104: 18941897.
  • 4
    Latif, T., Pohlman, B., Kalaycio, M., Sobecks, R., Hsi, E. D., Andresen, S. and Bolwell, B. J., Syngeneic graft-versus-host disease: a report of two cases and literature review. Bone Marrow Transplant. 2003. 32: 535539.
  • 5
    Spaner, D., Lowsky, R., Fyles, G., Lipton, J. H., Banerjee, D., Ng, C. M., Wade, J. A. and Messner, H. A., Acute intestinal graft-versus-host disease in a syngeneic bone marrow transplant recipient. Transplantation 1998. 66: 12511253.
  • 6
    Lyons, R., Narain, S., Nichols, C., Satoh, M. and Reeves, W. H., Effective use of autoantibody tests in the diagnosis of systemic autoimmune disease. Ann. N. Y. Acad. Sci. 2005. 1050: 217228.
  • 7
    Kronenberg, M. and Rudensky, A., Regulation of immunity by self-reactive T cells. Nature 2005. 435: 598604.
  • 8
    Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. and Toda, M., Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 1995. 155: 11511164.
  • 9
    Shevach, E. M., Regulatory/suppressor T cells in health and disease. Arthritis Rheum. 2004. 50: 27212724.
  • 10
    Sakaguchi, S., Takahashi, T. and Nishizuka, Y., Study on cellular events in postthymectomy autoimmune oophoritis in mice. I. Requirement of Lyt-1 effector cells for oocytes damage after adoptive transfer. J. Exp. Med. 1982. 156: 15651576.
  • 11
    Fontenot, J. D., Rasmussen, J. P., Gavin, M. A. and Rudensky, A. Y., A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat. Immunol. 2005. 6: 11421151.
  • 12
    Hori, S., Nomura, T. and Sakaguchi, S., Control of regulatory T cell development by the transcription factor Foxp3. Science 2003. 299: 10571061.
  • 13
    Fontenot, J. D., Rasmussen, J. P., Williams, L. M., Dooley, J. L., Farr, A. G. and Rudensky, A. Y., Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 2005. 22: 329341.
  • 14
    Bosco, N., Hung, H. C., Pasqual, N., Jouvin-Marche, E., Marche, P. N., Gascoigne, N. R. and Ceredig, R., Role of the T cell receptor alpha chain in the development and phenotype of naturally arising CD4(+)CD25(+) T cells. Mol. Immunol. 2006. 43: 246254.
  • 15
    Gavin, M. A., Clarke, S. R., Negrou, E., Gallegos, A. and Rudensky, A., Homeostasis and anergy of CD4(+)CD25(+) suppressor T cells in vivo. Nat. Immunol. 2002. 3: 3341.
  • 16
    Kasow, K. A., Chen, X., Knowles, J., Wichlan, D., Handgretinger, R. and Riberdy, J. M., Human CD4+CD25+ regulatory T cells share equally complex and comparable repertoires with CD4+CD25 counterparts. J. Immunol. 2004. 172: 61236128.
  • 17
    Hsieh, C. S., Liang, Y., Tyznik, A. J., Self, S. G., Liggitt, D. and Rudensky, A. Y., Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity 2004. 21: 267277.
  • 18
    Azzam, H. S., DeJarnette, J. B., Huang, K., Emmons, R., Park, C. S., Sommers, C. L., El-Khoury, D. et al., Fine tuning of TCR signaling by CD5. J. Immunol. 2001. 166: 54645472.
  • 19
    Thornton, A. M. and Shevach, E. M., CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 1998. 188: 287296.
  • 20
    Asano, M., Toda, M., Sakaguchi, N. and Sakaguchi, S., Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J. Exp. Med. 1996. 184: 387396.
  • 21
    Sakaguchi, S., Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 2004. 22: 531562.
  • 22
    Dolnikov, A., Shen, S., Passioura, T. and Symonds, G., Bone marrow reconstitution as a relevant model of genetically programmed leukemia. Curr. Med. Chem. Cardiovasc. Hematol. Agents 2003. 1: 8397.
  • 23
    Nomura, T. and Sakaguchi, S., Naturally arising CD25+CD4+ regulatory T cells in tumor immunity. Curr. Top. Microbiol. Immunol. 2005. 293: 287302.
  • 24
    Maloy, K. J., Antonelli, L. R., Lefevre, M. and Powrie, F., Cure of innate intestinal immune pathology by CD4+CD25+ regulatory T cells. Immunol. Lett. 2005. 97: 189192.
  • 25
    Martin, B., Banz, A., Bienvenu, B., Cordier, C., Dautigny, N., Becourt, C. and Lucas, B., Suppression of CD4+ T lymphocyte effector functions by CD4+CD25+ cells in vivo. J. Immunol. 2004. 172: 33913398.
  • 26
    Oldenhove, G., de Heusch, M., Urbain-Vansanten, G., Urbain, J., Maliszewski, C., Leo, O. and Moser, M., CD4+ CD25+ regulatory T cells control T helper cell type 1 responses to foreign antigens induced by mature dendritic cells in vivo. J. Exp. Med. 2003. 198: 259266.
  • 27
    Dannull, J., Su, Z., Rizzieri, D., Yang, B. K., Coleman, D., Yancey, D., Zhang, A. et al., Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J. Clin. Invest. 2005. 115: 36233633.
  • 28
    Kohm, A. P., McMahon, J. S., Podojil, J. R., Begolka, W. S., DeGutes, M., Kasprowicz, D. J., Ziegler, S. F. and Miller, S. D., Cutting edge: Anti-CD25 monoclonal antibody injection results in the functional inactivation, not depletion, of CD4+CD25+ T regulatory cells. J. Immunol. 2006. 176: 33013305.
  • 29
    Van Bekkum, D. W., Experimental basis for the treatment of autoimmune diseases with autologous hematopoietic stem cell transplantation. Bone Marrow Transplant. 2003. 32 Suppl 1: S3739.
  • 30
    Balciunaite, G., Ceredig, R., Massa, S. and Rolink, A. G., A B220+ CD117+ CD19 hematopoietic progenitor with potent lymphoid and myeloid developmental potential. Eur. J. Immunol. 2005. 35: 20192030.
  • 31
    Ceredig, R. and MacDonald, H. R., Phenotypic and functional properties of murine thymocytes. II. Quantitation of host- and donor-derived cytolytic T lymphocyte precursors in regenerating radiation bone marrow chimeras. J. Immunol. 1982. 128: 614620.
  • 32
    Lowenthal, J. W. and Harris, A. W., Activation of mouse lymphocytes inhibits induction of rapid cell death by x-irradiation. J. Immunol. 1985. 135: 11191125.
  • 33
    Anderson, B. E., McNiff, J. M., Matte, C., Athanasiadis, I., Shlomchik, W. D. and Shlomchik, M. J., Recipient CD4+ T cells that survive irradiation regulate chronic graft-versus-host disease. Blood 2004. 104: 15651573.
  • 34
    Nocentini, G., Giunchi, L., Ronchetti, S., Krausz, L. T., Bartoli, A., Moraca, R., Migliorati, G. and Riccardi, C., A new member of the tumor necrosis factor/nerve growth factor receptor family inhibits T cell receptor-induced apoptosis. Proc. Natl. Acad. Sci. USA 1997. 94: 62166221.
  • 35
    Minamimura, K., Gao, W. and Maki, T., CD4+ Regulatory T cells are spared from deletion by antilymphocyte serum, a polyclonal anti-T cell antibody. J. Immunol. 2006. 176: 41254132.
  • 36
    Contractor, N. V., Bassiri, H., Reya, T., Park, A. Y., Baumgart, D. C., Wasik, M. A., Emerson, S. G. and Carding, S. R., Lymphoid hyperplasia, autoimmunity, and compromised intestinal intraepithelial lymphocyte development in colitis-free gnotobiotic IL-2-deficient mice. J. Immunol. 1998. 160: 385394.
  • 37
    Mahler, M. and Leiter, E. H., Genetic and environmental context determines the course of colitis developing in IL-10-deficient mice. Inflamm. Bowel Dis. 2002. 8: 347355.
  • 38
    Madsen, K. L., Doyle, J. S., Tavernini, M. M., Jewell, L. D., Rennie, R. P. and Fedorak, R. N., Antibiotic therapy attenuates colitis in interleukin 10 gene-deficient mice. Gastroenterology 2000. 118: 10941105.
  • 39
    Panwala, C. M., Jones, J. C. and Viney, J. L., A novel model of inflammatory bowel disease: mice deficient for the multiple drug resistance gene, mdr1a, spontaneously develop colitis. J. Immunol. 1998. 161: 57335744.
  • 40
    Malissen, M., Gillet, A., Ardouin, L., Bouvier, G., Trucy, J., Ferrier, P., Vivier, E. and Malissen, B., Altered T cell development in mice with a targeted mutation of the CD3-epsilon gene. EMBO J. 1995. 14: 46414653.
  • 41
    Shinkai, Y., Rathbun, G., Lam, K. P., Oltz, E. M., Stewart, V., Mendelsohn, M., Charron, J. et al., RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 1992. 68: 855867.
  • 42
    Ceredig, R. and Rolink, T., A positive look at double-negative thymocytes. Nat. Rev. Immunol. 2002. 2: 888897.
  • 43
    Harfst, E., Andersson, J., Grawunder, U., Ceredig, R. and Rolink, A. G., Homeostatic and functional analysis of mature B cells in lambda5-deficient mice. Immunol. Lett. 2005. 101: 173184.