SEARCH

SEARCH BY CITATION

  • 1
    Chatila, T. A., Blaeser, F., Ho, N., Lederman, H. M., Voulgaropoulos, C., Helms, C. and Bowcock, A. M., JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J. Clin. Invest. 2000. 106: R75–R81.
  • 2
    Wildin, R. S., Ramsdell, F., Peake, J., Faravelli, F., Casanova, J. L., Buist, N., Levy-Lahad, E. et al., X-linked neonatal diabetes mellitus, enteropathy and endocrinopahty syndrome is the human equivalent of mouse scurfy. Nat. Genet. 2001. 27: 1820.
  • 3
    Bennett, C. L., Christie, J., Ramsdell, F., Brunkow, M. E., Ferguson, P. J., Whitesell, L., Kelly, T. E. et al., The immune dysregulation polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 2001. 27: 2021.
  • 4
    Godfrey, V. L., Wilkinson, J. E. and Russell, L. B., X-linked lymphoreticular disease in the scurfy (sf) mutant mouse. Am. J. Pathol. 1991. 138: 13791387.
  • 5
    Blair, P. J., Bultman, S. J., Haas, J. C., Rouse, B. T., Wilkinson, J. E. and Godfrey, V. L., CD4+CD8 T cells are the effector cells in disease pathogenesis in the scurfy (sf) mouse. J. Immunol. 1994. 153: 37643774.
  • 6
    Clark, L. B., Appleby, M. W., Brunkow, M. E., Wilkinson, J. E., Ziegler, S. F. and Ramsdell, F., Cellular and molecular characterization of the scurfy mouse mutant. J. Immunol. 1999. 162: 25462554.
  • 7
    Zahorsky-Reeves, J. L. and Wilkinson, J. E., The murine mutation scurfy (sf) results in an antigen-dependent lymphoproliferative disease with altered T cell sensitivity. Eur. J. Immunol. 2001. 31: 196204.
  • 8
    Brunkow, M. E., Jeffery, E. W., Hjerrild, K. A., Paeper, B., Clark, L. B., Yasayko, S. A., Wilkinson, J. E. et al., Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 2001. 27: 6873.
  • 9
    Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. and Toda, M., Immunological self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 1995. 155: 11511164.
  • 10
    Itoh, M., Takahashi, T., Sakaguchi, N., Kuniyasu, Y., Shimizu, J., Otsuka, F. and Sakaguchi, S., Thymus and autoimmunity: Production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J. Immunol. 1999. 162: 53175326.
  • 11
    Asano, M., Toda, M., Sakaguchi, N. and Sakaguchi, S., Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J. Exp. Med. 1996. 184: 387396.
  • 12
    Hori, S., Nomura, T. and Sakaguchi, S., Control of regulatory T cell development by the transcription factor Foxp3. Science 2003. 299: 10571061.
  • 13
    Fontenot, J. D., Gavin, M. A. and Rudensky, A. Y., Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 2003. 4: 330336.
  • 14
    Fontenot, J. D., Rasmussen, J. P., Williams, L. M., Dooley, J. L., Farr, A. G. and Rudensky, A. Y., Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 2005. 22: 329341.
  • 15
    Dieckmann, D., Plottner, H., Berchtold, S., Berger, T. and Schuler, G., Ex vivo isolation and characterization of CD4+CD25+ T cells with regulatory properties from human blood. J. Exp. Med. 2001. 193: 13031310.
  • 16
    Ng, W. F., Duggan, P. J., Ponchel, F., Matarese, G., Lombardi, G., Edwards, A. D. and Isaacs, J. D. et al., Human CD4+CD25+ cells: A naturally occurring population of regulatory T cells. Blood 2001. 98: 27362744.
  • 17
    Levings, M. K., Sangregorio, R. and Roncarolo, M. G., Human CD25+CD4+ T regulatory cells suppress naive and memory T-cell proliferation and can be expanded in vitro without loss of function. J. Exp. Med. 2001. 193: 12951302.
  • 18
    Walker, M. R., Kasprowicz, D. J., Gersuk, V. H., Benard, A., Van Landeghen, M., Buckner, J. H. and Ziegler, S. F., Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25 T cells. J. Clin. Invest. 2003. 112: 14371443.
  • 19
    Walker, M. R., Carson, B. D., Nepom, G. T., Ziegler, S. F. and Buchner, J. H., De novo generation of antigen-specific CD4+CD25+ regulatory T cells from human CD4+CD25 cells. Proc. Natl. Acad. Sci. USA 2005. 102: 41034108.
  • 20
    Morgen, M. E., van Bilsen, J. H., Bakker, A. M., Heemskerk, B., Schilham, M. W., Hartgers, F. C., Elferink, B. G. et al., Expression of FOXP3 mRNA is not confined to CD4+CD25+ T regulatory cells in humans. Hum. Immunol. 2005. 66: 1320.
  • 21
    Allan, S. E., Passerini, L., Bacchetta, R., Crellin, N., Dai, M., Orban, P. C., Ziegler, S. F. et al., The role of 2 FOXP3 isoforms in the generation of human CD4+ Tregs. J. Clin. Invest. 2005. 115: 32763284.
  • 22
    Yagi, H., Nomura, T., Nakamura, K., Yamazaki, S., Kitawaki, T., Hori, S., Maeda, M. et al., Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. Int. Immunol. 2004. 16: 16431656.
  • 23
    Mantel, P. Y., Ouaked, N., Ruckert, B., Karagiannidis, C., Welz, R., Blaser, K. and Schmidt-Weber, C. B., Molecular mechanisms underlying FOXP3 induction in human T cells. J. Immunol. 2006. 176: 35933602.
  • 24
    Gavin, M. A., Torgerson, T. R., Houston, E., Deroos, P., Ho, W. Y., Stray-Pedersen, A., Ocheltree, E. L. et al., Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc. Natl. Acad. Sci. USA 2006. 103: 66596664.
  • 25
    de Kleer, I. M., Wedderburn, L. R., Taams, L. S., Patel, A., Varsani, H., Klein, M., de Jager, W. et al., CD4+CD25bright regulatory T cells actively regulate inflammation in the joints of patients with the remitting form of juvenile idiopathic arthritis. J. Immunol. 2004. 172: 64356443.
  • 26
    Ruprecht, C. R., Gattorno, M., Ferlito, F., Gregorio, A., Martini, A., Lanzavecchia, A. and Sallusto, F., Coexpression of CD25 and CD27 identifies FoxP3+ regulatory T cells in inflamed synovia. J. Exp. Med. 2005. 201: 17931803.
  • 27
    Kriegel, M. A., Lohmann, T., Gabler, C., Blank, N., Kalden, J. R. and Lorenz, H. M., Defective suppressor function of human CD4+CD25+ regulatory T cells in autoimmune polyglandular syndrome type II. J. Exp. Med. 2004. 199: 12851291.
  • 28
    Prabhala, R. H., Neri, P., Bae, J. E., Tassone, P., Shammas, M. A., Allam, C. K., Daley, J. F. et al., Dysfunctional T regulatory cells in multiple myeloma. Blood 2006. 107: 301304.
  • 29
    Admadzadeh, M. and Rosenberg, S. A., IL-2 administration increases CD4+CD25hiFoxp3+ regulatory T cells in cancer patients. Blood 2006. 107: 24092414.
  • 30
    Walther, M., Tongren, J. E., Andrews, L., Korbel, D., King, E., Fletcher, H., Andersen, R. F. et al., Upregulation of TGF-beta, FOXP3, and CD4+CD25+ regulatory T cells correlates with more rapid parasite growth in human malaria infection. Immunity 2005. 23: 287296.
  • 31
    Roncador, G., Brown, P. J., Maestre, L., Hue, S., Martinez-Torrecuadrada, J. L., Ling, K. L., Pratap, S. et al., Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells at the single-cell level. Eur. J. Immunol. 2005. 35: 16811691.
  • 32
    Fantini, M. C., Becker, C., Monteleone, G., Pallone, F., Galle, P. R. and Neurath, M. F., Cutting Edge: TGF-β induces a regulatory phenotype in CD4+CD25 T cells through Foxp3 induction and down-regulation of Smad 7. J. Immunol. 2004. 172: 51495153.
  • 33
    Dipaolo, R. J., Glass, D. D., Bijwaard, K. E. and Shevach, E. M., CD4+CD25+ T cells prevent the development of organ-specific autoimmune disease by inhibiting the differentiation of autoreactive effector T cells. J. Immunol. 2005. 175: 71357142.
  • 34
    Sakaguchi, S., Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol. 2005. 6: 345352.
  • 35
    Bettelli, E., Dastrange, M. and Oukka, M., Foxp3 interacts with nuclear factor of activated T cells and NF-κB to repress cytokine gene expression and effector functions of T helper cells. Proc. Natl. Acad. Sci. USA 2005. 102: 51385143.
  • 36
    Schubert, L. A., Jeffery, E., Zhang, Y., Ramsdell, F. and Ziegler, S. F., Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. J. Biol. Chem. 2001. 276: 3767237679.
  • 37
    Xiao, S., Matsui, K., Fine, A., Zhu, B., Marshak-Rothstein, A., Widom, R. L. and Ju, S. T., FasL promoter activation by IL-2 through SP1 and NFAT but not Egr-2 and Egr-3. Eur. J. Immunol. 1999. 29: 34563465.
  • 38
    Zorn, E., Nelson, E. A., Mohseni, M., Porcheray, F., Kim, H., Litsa, D., Bellucci, R. et al., IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT dependent mechanism and induces the expansion of these cells in vivo. Blood 2006. 108: 15711579.
  • 39
    Fontenot, J. D. and Rudensky, A. Y., A well adapted regulatory contrivance: Regulatory T cell development and the forkhead family transcription factor Foxp3. Nat. Immunol. 2005. 6: 331337.
  • 40
    Wu, Y., Borde, M., Heissmeyer, V., Feuerer, M., Lapan, A. D., Stroud, J. C., Bates, D. L. et al., FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 2006. 126: 375387.
  • 41
    Curotto de Lafaille, M. A., Lino, A. C., Kutchukhidze, N. and Lafaille, J. J., CD25 T cells generate CD25+Foxp3+ regulatory T cells by peripheral expansion. J. Immunol. 2004. 173: 72597268.
  • 42
    Sereti, I., Imamichi, H., Natarajan, V., Imamichi, T., Ramchandani, M. S., Badralmaa, Y., Berg, S. C. et al., In vivo expansion of CD4+CD45ROCD25+ T cells expressing foxP3 in IL-2-treated HIV-infected patients. J. Clin. Invest. 2005. 115: 18391847.