• 1
    Banchereau, J. and Steinman, R. M., Dendritic cells and the control of immunity. Nature 1998. 392: 245252.
  • 2
    Davis, I. D., Jefford, M., Parente, P. and Cebon, J., Rational approaches to human cancer immunotherapy. J. Leukoc. Biol. 2003. 73: 329.
  • 3
    Banchereau, J. and Palucka, A. K., Dendritic cells as therapeutic vaccines against cancer. Nat. Rev. Immunol. 2005. 5: 296306.
  • 4
    Schuler, G., Schuler-Thurner, B. and Steinman, R. M., The use of dendritic cells in cancer immunotherapy. Curr. Opin. Immunol. 2003. 15: 138147.
  • 5
    Gilboa, E., The promise of cancer vaccines. Nat. Rev. Cancer 2004. 4: 401411.
  • 6
    Rosenberg, S. A., Yang, J. C. and Restifo, N. P., Cancer immunotherapy: moving beyond current vaccines. Nat. Med. 2004. 10: 909915.
  • 7
    Banchereau, J., Palucka, A. K., Dhodapkar, M., Burkeholder, S., Taquet, N., Rolland, A., Taquet, S. et al., Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res. 2001. 61: 64516458.
  • 8
    Celluzzi, C. M., Mayordomo, J. I., Storkus, W. J., Lotze, M. T. and Falo, L. D., Jr., Peptide-pulsed dendritic cells induce antigen-specific CTL-mediated protective tumor immunity. J. Exp. Med. 1996. 183: 283287.
  • 9
    Fong, L., Hou, Y., Rivas, A., Benike, C., Yuen, A., Fisher, G. A., Davis, M. M. and Engleman, E. G., Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc. Natl. Acad. Sci. USA 2001. 98: 88098814.
  • 10
    Lau, R., Wang, F., Jeffery, G., Marty, V., Kuniyoshi, J., Bade, E., Ryback, M. E. and Weber, J., Phase I trial of intravenous peptide-pulsed dendritic cells in patients with metastatic melanoma. J. Immunother. 2001. 24: 6678.
  • 11
    Nestle, F. O., Alijagic, S., Gilliet, M., Sun, Y., Grabbe, S., Dummer, R., Burg, G. and Schadendorf, D., Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat. Med. 1998. 4: 328332.
  • 12
    Schuler-Thurner, B., Dieckmann, D., Keikavoussi, P., Bender, A., Maczek, C., Jonuleit, H., Roder, C. et al., Mage-3 and influenza-matrix peptide-specific cytotoxic T cells are inducible in terminal stage HLA-A2.1+ melanoma patients by mature monocyte-derived dendritic cells. J. Immunol. 2000. 165: 34923496.
  • 13
    Slingluff, C. L., Jr., Petroni, G. R., Yamshchikov, G. V., Barnd, D. L., Eastham, S., Galavotti, H., Patterson, J. W. et al., Clinical and immunologic results of a randomized phase II trial of vaccination using four melanoma peptides either administered in granulocyte-macrophage colony-stimulating factor in adjuvant or pulsed on dendritic cells. J. Clin. Oncol. 2003. 21: 40164026.
  • 14
    de Vries, I. J., Lesterhuis, W. J., Scharenborg, N. M., Engelen, L. P., Ruiter, D. J., Gerritsen, M. J., Croockewit, S. et al., Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin. Cancer Res. 2003. 9: 50915100.
  • 15
    Zhang, Y., Renkvist, N., Sun, Z., Schuler-Thurner, B., Glaichenhaus, N., Schuler, G. et al., A polyclonal anti-vaccine CD4 T cell response detected with HLA-DP4 multimers in a melanoma patient vaccinated with MAGE-3.DP4-peptide-pulsed dendritic cells. Eur. J. Immunol. 2005. 35: 10661075.
  • 16
    Paczesny, S., Banchereau, J., Wittkowski, K. M., Saracino, G., Fay, J. and Palucka, A. K., Expansion of melanoma-specific cytolytic CD8+ T cell precursors in patients with metastatic melanoma vaccinated with CD34+ progenitor-derived dendritic cells. J. Exp. Med. 2004. 199: 15031511.
  • 17
    Fay, J. W., Palucka, A. K., Paczesny, S., Dhodapkar, M., Johnston, D. A., Burkeholder, S., Ueno, H. and Banchereau, J., Long-term outcomes in patients with metastatic melanoma vaccinated with melanoma peptide-pulsed CD34(+) progenitor-derived dendritic cells. Cancer Immunol. Immunother. 2006. 10: 12091218.
  • 18
    Janssen, E. M., Lemmens, E. E., Wolfe, T., Christen, U., von Herrath, M. G. and Schoenberger, S. P., CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 2003. 421: 852856.
  • 19
    Shedlock, D. J. and Shen, H., Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 2003. 300: 337339.
  • 20
    Sun, J. C. and Bevan, M. J., Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 2003. 300: 339342.
  • 21
    Albert, M. L., Sauter, B. and Bhardwaj, N., Dendritic cells acquire antigen from apoptotic cells and induce class I- restricted CTLs. Nature 1998. 392: 8689.
  • 22
    Albert, M. L., Pearce, S. F., Francisco, L. M., Sauter, B., Roy, P., Silverstein, R. L. and Bhardwaj, N., Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J. Exp. Med. 1998. 188: 13591368.
  • 23
    Chang, A. E., Redman, B. G., Whitfield, J. R., Nickoloff, B. J., Braun, T. M., Lee, P. P., Geiger, J. D. and Mule, J. J., A phase I trial of tumor lysate-pulsed dendritic cells in the treatment of advanced cancer. Clin. Cancer Res. 2002. 8: 10211032.
  • 24
    Maier, T., Tun-Kyi, A., Tassis, A., Jungius, K. P., Burg, G., Dummer, R. and Nestle, F. O., Vaccination of patients with cutaneous T-cell lymphoma using intranodal injection of autologous tumor-lysate-pulsed dendritic cells. Blood 2003. 102: 23382344.
  • 25
    Salcedo, M., Bercovici, N., Taylor, R., Vereecken, P., Massicard, S., Duriau, D., Vernel-Pauillac, F. et al., Vaccination of melanoma patients using dendritic cells loaded with an allogeneic tumor cell lysate. Cancer Immunol. Immunother. 2005: 111.
  • 26
    Timmerman, J. M., Czerwinski, D. K., Davis, T. A., Hsu, F. J., Benike, C., Hao, Z. M., Taidi, B. et al., Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood 2002. 99: 15171526.
  • 27
    Nair, S. K., Morse, M., Boczkowski, D., Cumming, R. I., Vasovic, L., Gilboa, E. and Lyerly, H. K., Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells. Ann. Surg. 2002. 235: 540549.
  • 28
    Bonehill, A., Heirman, C., Tuyaerts, S., Michiels, A., Breckpot, K., Brasseur, F., Zhang, Y. et al., Messenger RNA-electroporated dendritic cells presenting MAGE-A3 simultaneously in HLA class I and class II molecules. J. Immunol. 2004. 172: 66496657.
  • 29
    Grunebach, F., Muller, M. R. and Brossart, P., New developments in dendritic cell-based vaccinations: RNA translated into clinics. Cancer Immunol. Immunother. 2005. 54: 517525.
  • 30
    Su, Z., Dannull, J., Yang, B. K., Dahm, P., Coleman, D., Yancey, D., Sichi, S. et al., Telomerase mRNA-transfected dendritic cells stimulate antigen-specific CD8+ and CD4+ T cell responses in patients with metastatic prostate cancer. J. Immunol. 2005. 174: 37983807.
  • 31
    Berard, F., Blanco, P., Davoust, J., Neidhart-Berard, E. M., Nouri-Shirazi, M., Taquet, N., Rimoldi, D. et al., Cross-priming of Naive CD8 T Cells against Melanoma Antigens Using Dendritic Cells Loaded with Killed Allogeneic Melanoma Cells. J. Exp. Med. 2000. 192: 15351544.
  • 32
    Nouri-Shirazi, M., Banchereau, J., Bell, D., Burkeholder, S., Kraus, E. T., Davoust, J. and Palucka, K. A., Dendritic cells capture killed tumor cells and present their antigens to elicit tumor-specific immune responses. J. Immunol . 2000. 165: 37973803.
  • 33
    Shaif-Muthana, M., McIntyre, C., Sisley, K., Rennie, I. and Murray, A., Dead or alive: immunogenicity of human melanoma cells when presented by dendritic cells. Cancer Res. 2000. 60: 64416447.
  • 34
    O'Rourke, M. G., Johnson, M., Lanagan, C., See, J., Yang, J., Bell, J. R., Slater, G. J. et al. W., Durable complete clinical responses in a phase I/II trial using an autologous melanoma cell/dendritic cell vaccine. Cancer Immunol. Immunother. 2003. 52: 387395.
  • 35
    Palucka, A. K., Ueno, H., Connolly, J., Kerneis-Norvell, F., Blanck, J. P., Johnston, D. A., Fay, J. and Banchereau, J., Dendritic cells loaded with killed allogeneic melanoma cells can induce objective clinical responses and MART-1 specific CD8+ T-cell immunity. J. Immunother. 2006. 29: 545557.
  • 36
    Shortman, K. and Liu, Y. J., Mouse and human dendritic cell subtypes. Nat. Rev. Immunol. 2002. 2: 151161.
  • 37
    Caux, C., Vanbervliet, B., Massacrier, C., Dezutter-Dambuyant, C., de Saint-Vis, B., Jacquet, C., Yoneda, K. et al., CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF alpha. J. Exp. Med. 1996. 184: 695706.
  • 38
    Caux, C., Massacrier, C., Vanbervliet, B., Dubois, B., Durand, I., Cella, M., Lanzavecchia, A. and Banchereau, J., CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to granulocyte-macrophage colony-stimulating factor plus tumor necrosis factor alpha: II. Functional analysis. Blood 1997. 90: 14581470.
  • 39
    Nagata, Y., Ono, S., Matsuo, M., Gnjatic, S., Valmori, D., Ritter, G., Garrett, W. et al., Differential presentation of a soluble exogenous tumor antigen, NY-ESO-1, by distinct human dendritic cell populations. Proc. Natl. Acad. Sci. USA 2002. 99: 1062910634.
  • 40
    Ratzinger, G., Baggers, J., de Cos, M. A., Yuan, J., Dao, T., Reagan, J. L., Munz, C. et al., Mature human Langerhans cells derived from CD34+ hematopoietic progenitors stimulate greater cytolytic T lymphocyte activity in the absence of bioactive IL-12p70, by either single peptide presentation or cross-priming, than do dermal-interstitial or monocyte-derived dendritic cells. J. Immunol. 2004. 173: 27802791.
  • 41
    Munz, C., Dao, T., Ferlazzo, G., de Cos, M. A., Goodman, K. and Young, J. W., Mature myeloid dendritic cell subsets have distinct roles for activation and viability of circulating human natural killer cells. Blood 2005. 105: 266273.
  • 42
    den Haan, J. M., Lehar, S. M. and Bevan, M. J., CD8(+) but not CD8(-) dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med. 2000. 192: 16851696.
  • 43
    Iyoda, T., Shimoyama, S., Liu, K., Omatsu, Y., Akiyama, Y., Maeda, Y., Takahara, K. et al., The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo. J. Exp. Med. 2002. 195: 12891302.
  • 44
    Chomez, P., De Backer, O., Bertrand, M., De Plaen, E., Boon, T. and Lucas, S., An overview of the MAGE gene family with the identification of all human members of the family. Cancer Res. 2001. 61: 55445551.
  • 45
    Rubartelli, A., Poggi, A. and Zocchi, M. R., The selective engulfment of apoptotic bodies by dendritic cells is mediated by the alpha(v)beta3 integrin and requires intracellular and extracellular calcium. Eur. J. Immunol. 1997. 27: 18931900.
  • 46
    Nouri-Shirazi, M., Banchereau, J., Fay, J. and Palucka, K., Dendritic cell based tumor vaccines [In Process Citation]. Immunol. Lett. 2000. 74: 510.
  • 47
    Dalgaard, J., Beckstrom, K. J., Jahnsen, F. L. and Brinchmann, J. E., Differential capability for phagocytosis of apoptotic and necrotic leukemia cells by human peripheral blood dendritic cell subsets. J. Leukoc. Biol. 2005. 77: 689698.
  • 48
    Reis e Sousa, C., Stahl, P. D. and Austyn, J. M., Phagocytosis of antigens by Langerhans cells in vitro. J. Exp. Med. 1993. 178: 509519.
  • 49
    Filgueira, L., Nestle, F. O., Rittig, M., Joller, H. I. and Groscurth, P., Human dendritic cells phagocytose and process Borrelia burgdorferi. J. Immunol. 1996. 157: 29983005.
  • 50
    Schulz, O., Pennington, D. J., Hodivala-Dilke, K., Febbraio, M. and Reis e Sousa, C., CD36 or alphavbeta3 and alphavbeta5 integrins are not essential for MHC class I cross-presentation of cell-associated antigen by CD8 alpha+ murine dendritic cells. J. Immunol. 2002. 168: 60576065.
  • 51
    Obeid, M., Tesniere, A., Ghiringhelli, F., Fimia, G. M., Apetoh, L., Perfettini, J. L., Castedo, M. et al., Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 2007. 13: 5461.
  • 52
    Allan, R. S., Smith, C. M., Belz, G. T., van Lint, A. L., Wakim, L. M., Heath, W. R. and Carbone, F. R., Epidermal viral immunity induced by CD8alpha+ dendritic cells but not by Langerhans cells. Science 2003. 301: 19251928.
  • 53
    Bosnjak, L., Miranda-Saksena, M., Koelle, D. M., Boadle, R. A., Jones, C. A. and Cunningham, A. L., Herpes simplex virus infection of human dendritic cells induces apoptosis and allows cross-presentation via uninfected dendritic cells. J. Immunol. 2005. 174: 22202227.
  • 54
    Matsuo, M., Nagata, Y., Sato, E., Atanackovic, D., Valmori, D., Chen, Y. T., Ritter, G. et al., IFN-gamma enables cross-presentation of exogenous protein antigen in human Langerhans cells by potentiating maturation. Proc. Natl. Acad. Sci. USA 2004. 101: 1446714472.
  • 55
    Gatti, E., Velleca, M. A., Biedermann, B. C., Ma, W., Unternaehrer, J., Ebersold, M. W., Medzhitov, R. et al., Large-scale culture and selective maturation of human Langerhans cells from granulocyte colony-stimulating factor-mobilized CD34+ progenitors. J. Immunol. 2000. 164: 36003607.
  • 56
    Geissmann, F., Revy, P., Regnault, A., Lepelletier, Y., Dy, M., Brousse, N., Amigorena, S., Hermine, O. and Durandy, A., TGF-beta 1 prevents the noncognate maturation of human dendritic Langerhans cells. J. Immunol. 1999. 162: 45674575.
  • 57
    Valladeau, J. and Saeland, S., Cutaneous dendritic cells. Semin. Immunol. 2005. 17: 273283.
  • 58
    Geissmann, F., Prost, C., Monnet, J. P., Dy, M., Brousse, N. and Hermine, O., Transforming growth factor beta1, in the presence of granulocyte/macrophage colony-stimulating factor and interleukin 4, induces differentiation of human peripheral blood monocytes into dendritic Langerhans cells. J. Exp. Med. 1998. 187: 961966.
  • 59
    Lee, P. P., Yee, C., Savage, P. A., Fong, L., Brockstedt, D., Weber, J. S., Johnson, D., Swetter, S. et al., Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat. Med. 1999. 5: 677685.
  • 60
    Ueno, H., Tcherepanova, I., Reygrobellet, O., Laughner, E., Ventura, C., Palucka, A. K. and Banchereau, J., Dendritic cell subsets generated from CD34+ hematopoietic progenitors can be transfected with mRNA and induce antigen-specific cytotoxic T cell responses. J. Immunol. Methods 2004. 285: 171180.
  • 61
    Shi, H., Cao, T., Connolly, J. E., Monnet, L., Bennett, L., Chapel, S., Bagnis, C. et al., Hyperthermia enhances CTL cross-priming. J. Immunol. 2006. 176: 21342141.