SEARCH

SEARCH BY CITATION

  • 1
    Zhou, L. J., Schwarting, R., Smith, H. M. and Tedder, T. F., A novel cell-surface molecule expressed by human interdigitating reticulum cells, Langerhans cells, and activated lymphocytes is a new member of the Ig superfamily. J. Immunol. 1992. 149: 735742.
  • 2
    Kozlow, E. J., Wilson, G. L., Fox, C. H. and Kehrl, J. H., Subtractive cDNA cloning of a novel member of the Ig gene superfamily expressed at high levels in activated B lymphocytes. Blood 1993. 81: 454461.
  • 3
    Bender, A., Sapp, M., Schuler, G., Steinman, R. M. and Bhardwaj, N., Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J. Immunol. Methods 1996. 196: 121135.
  • 4
    Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y. J., Pulendran, B. and Palucka, K., Immunobiology of dendritic cells. Annu. Rev. Immunol. 2000. 18: 767811.
  • 5
    Mellman, I. and Steinman, R. M., Dendritic cells: Specialized and regulated antigen processing machines. Cell 2001. 106: 255258.
  • 6
    Zhou, L. J. and Tedder, T. F., Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily. J. Immunol. 1995. 154: 38213835.
  • 7
    Timmerman, J. M. and Levy, R., Dendritic cell vaccines for cancer immunotherapy. Annu. Rev. Med. 1999. 50: 507529.
  • 8
    Hock, B. D., Kato, M., McKenzie, J. L. and Hart, D. N., A soluble form of CD83 is released from activated dendritic cells and B lymphocytes, and is detectable in normal human sera. Int. Immunol. 2001. 13: 959967.
  • 9
    Hirano, N., Butler, M. O., Xia, Z., Ansen, S., von Bergwelt-Baildon, M. S., Neuberg, D., Freeman, G. J. and Nadler, L. M., Engagement of CD83 ligand induces prolonged expansion of CD8+ T cells and preferential enrichment for antigen specificity. Blood 2006. 107: 15281536.
  • 10
    Wolenski, M., Cramer, S. O., Ehrlich, S., Steeg, C., Fleischer, B. and von Bonin, A., Enhanced activation of CD83-positive T cells. Scand. J. Immunol. 2003. 58: 306311.
  • 11
    Cramer, S. O., Trumpfheller, C., Mehlhoop, U., More, S., Fleischer, B. and von Bonin, A., Activation-induced expression of murine CD83 on T cells and identification of a specific CD83 ligand on murine B cells. Int. Immunol. 2000. 12: 13471351.
  • 12
    McKinsey, T. A., Chu, Z., Tedder, T. F. and Ballard, D. W., Transcription factor NF-kappaB regulates inducible CD83 gene expression in activated T lymphocytes. Mol. Immunol. 2000. 37: 783788.
  • 13
    Cao, W., Lee, S. H. and Lu, J., CD83 is preformed inside monocytes, macrophages and dendritic cells, but it is only stably expressed on activated dendritic cells. Biochem. J. 2005. 385: 8593.
  • 14
    Klein, E., Koch, S., Borm, B., Neumann, J., Herzog, V., Koch, N. and Bieber, T., CD83 localization in a recycling compartment of immature human monocyte-derived dendritic cells. Int. Immunol. 2005. 17: 477487.
  • 15
    Lechmann, M., Krooshoop, D. J., Dudziak, D., Kremmer, E., Kuhnt, C., Figdor, C. G., Schuler, G. and Steinkasserer, A., The extracellular domain of CD83 inhibits dendritic cell-mediated T cell stimulation and binds to a ligand on dendritic cells. J. Exp. Med. 2001. 194: 18131821.
  • 16
    Scholler, N., Hayden-Ledbetter, M., Hellstrom, K. E., Hellstrom, I. and Ledbetter, J. A., CD83 is a sialic acid-binding Ig-like lectin (Siglec) adhesion receptor that binds monocytes and a subset of activated CD8+ T cells. J. Immunol. 2001. 166: 38653872.
  • 17
    Kruse, M., Rosorius, O., Kratzer, F., Stelz, G., Kuhnt, C., Schuler, G., Hauber, J. and Steinkasserer, A., Mature dendritic cells infected with herpes simplex virus type 1 exhibit inhibited T-cell stimulatory capacity. J. Virol. 2000. 74: 71277136.
  • 18
    Senechal, B., Boruchov, A. M., Reagan, J. L., Hart, D. N. and Young, J. W., Infection of mature monocyte-derived dendritic cells with human cytomegalovirus inhibits stimulation of T-cell proliferation via the release of soluble CD83. Blood 2004. 103: 42074215.
  • 19
    Jenne, L., Schuler, G. and Steinkasserer, A., Viral vectors for dendritic cell-based immunotherapy. Trends Immunol. 2001. 22: 102107.
  • 20
    Kruse, M., Rosorius, O., Kratzer, F., Bevec, D., Kuhnt, C., Steinkasserer, A., Schuler, G. and Hauber, J., Inhibition of CD83 cell surface expression during dendritic cell maturation by interference with nuclear export of CD83 mRNA. J. Exp. Med. 2000. 191: 15811590.
  • 21
    Scholler, N., Hayden-Ledbetter, M., Dahlin, A., Hellstrom, I., Hellstrom, K. E. and Ledbetter, J. A., Cutting Edge: CD83 regulates the development of cellular immunity. J. Immunol. 2002. 168: 25992602.
  • 22
    Zinser, E., Lechmann, M., Golka, A., Lutz, M. B. and Steinkasserer, A., Prevention and treatment of experimental autoimmune encephalomyelitis by soluble CD83. J. Exp. Med. 2004. 200: 345351.
  • 23
    Dudziak, D., Nimmerjahn, F., Bornkamm, G. W. and Laux, G., Alternative splicing generates putative soluble CD83 proteins that inhibit T cell proliferation. J. Immunol. 2005. 174: 66726676.
  • 24
    Hock, B. D., Haring, L. F., Steinkasserer, A., Taylor, K. G., Patton, W. N. and McKenzie, J. L., The soluble form of CD83 is present at elevated levels in a number of hematological malignancies. Leuk. Res. 2004. 28: 237241.
  • 25
    Lechmann, M., Zinser, E., Golka, A. and Steinkasserer, A., Role of CD83 in the immunomodulation of dendritic cells. Int. Arch. Allergy Immunol. 2002. 129: 113118.
  • 26
    Lechmann, M., Kotzor, N., Zinser, E., Prechtel, A. T., Sticht, H. and Steinkasserer, A., CD83 is a dimer: Comparative analysis of monomeric and dimeric isoforms. Biochem. Biophys. Res. Commun. 2005. 329: 132139.
  • 27
    Garcia-Martinez, L. F., Appleby, M. W., Staehling-Hampton, K., Andrews, D. M., Chen, Y., McEuen, M., Tang, P. et al., A novel mutation in CD83 results in the development of a unique population of CD4+ T cells. J. Immunol. 2004. 173: 29953001.
  • 28
    Fujimoto, Y., Tu, L., Miller, A. S., Bock, C., Fujimoto, M., Doyle, C., Steeber, D. A. and Tedder, T. F., CD83 expression influences CD4+ T cell development in the thymus. Cell 2002. 108: 755767.
  • 29
    Bonehill, A., Heirman, C., Tuyaerts, S., Michiels, A., Zhang, Y., van der Bruggen, P. and Thielemans, K., Efficient presentation of known HLA class II-restricted MAGE-A3 epitopes by dendritic cells electroporated with messenger RNA encoding an invariant chain with genetic exchange of class II-associated invariant chain peptide. Cancer Res. 2003. 63: 55875594.
  • 30
    Tuyaerts, S., Noppe, S. M., Corthals, J., Breckpot, K., Heirman, C., De Greef, C., Van Riet, I. and Thielemans, K., Generation of large numbers of dendritic cells in a closed system using Cell Factories. J. Immunol. Methods 2002. 264: 135151.
  • 31
    Breckpot, K., Corthals, J., Bonehill, A., Michiels, A., Tuyaerts, S., Aerts, C., Heirman, C. and Thielemans, K., Dendritic cells differentiated in the presence of IFN-{beta} and IL-3 are potent inducers of an antigen-specific CD8+ T cell response. J. Leukoc. Biol. 2005. 78: 898908.
  • 32
    Michiels, A., Tuyaerts, S., Bonehill, A., Corthals, J., Breckpot, K., Heirman, C., Van Meirvenne, S. et al., Electroporation of immature and mature dendritic cells: Implications for dendritic cell-based vaccines. Gene Ther. 2005. 12: 772782.