• 1
    Srivastava, P. K., Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu. Rev. Immunol. 2002. 20: 395425.
  • 2
    Suto, R. and Srivastava, P. K., A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 1995. 269: 15851588.
  • 3
    Arnold, D., Faath, S., Rammensee, H. and Shild, H., Cross-priming of minor histocompatibility antigen-specific cytotoxic T cells upon immunization with the heat shock protein gp96. J. Exp. Med. 1995. 182: 885889.
  • 4
    Basu, S., Binder, R., Suto, R., Anderson, K. and Srivastava, P. K., Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-κB pathway. Int. Immunol. 2000. 12: 15391546.
  • 5
    Singh-Jasuja, H., Scherer, H., Hilf, N., Arnold-Schild, D., Rammensee, H. G., Toes, R. and Schild, H., The heat shock protein gp96 induces maturation of dendritic cells and down-regulation of its receptor. Eur. J. Immunol. 2000. 30: 22112215.
  • 6
    Udono, H., Levey, D. L. and Srivastava, P. K., Cellular requirements for tumor-specific immunity elicited by heat shock proteins: tumor rejection antigens gp96 primes CD8+ T cell in vivo. Proc. Natl. Acad. Sci. USA 1994. 91: 30773081.
  • 7
    Tamura, Y., Peng, P., Liu, K., Daou, M. and Srivastava, P. K., Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science 1997. 278: 117120.
  • 8
    Yamazaki, K., Nguyen, T. and Podack, E. R., Cutting edge: tumor secreted heat shock-fusion protein elicits CD8 cells for rejection. J. Immunol. 1999. 163: 51785182.
  • 9
    Robert, J., Ménoret, A., Basu, S., Cohen, N. and Srivastava, P. K., Phylogenetic conservation of the molecular and immunological properties of the chaperones gp96 and hsp70. Eur. J. Immunol. 2001. 31: 186195.
  • 10
    Robert, J., Gantress, J., Rau, L., Bell, A. and Cohen, N., Minor histocompatibility antigen-specific MHC-restricted CD8 T cell responses elicited by heat shock proteins. J. Immunol. 2002. 168: 16971703.
  • 11
    Maniero, G. and Robert, J., Phylogenetic conservation of gp96-mediated antigen-specific cellular immunity: new evidence from adoptive cell transfer in Xenopus. Transplantation 2004. 78: 14151421.
  • 12
    Strbo, N., Oizumi, S., Sotosek-Tokmadzic, V. and Podack, E. R., Perforin is required for innate and adaptive immunity induced by heat shock protein gp96. Immunity 2003. 18: 381390.
  • 13
    Nicchitta, C. V., Re-evaluating the role of heat-shock protein-peptide interactions in tumour immunity. Nat. Rev. Immunol. 2003. 3: 427432.
  • 14
    Goyos, A., Gantress, J., Cohen, N. and Robert, J., Anti-tumor classical MHC-unrestricted CD8 T cell cytotoxicity elicited by the heat shock protein gp96. Eur. J. Immunol. 2004. 34: 24492458.
  • 15
    Vegh, Z., Wang, P., Vanky, F. and Klein, E., Selectively downregulated expression of MHC class I alleles in human solid tumors. Cancer Res. 1993. 53: 24162420.
  • 16
    Sullivan, L. C., Hoare, H. L., McCluskey, J., Rossjohn, J. and Brooks, A. G., A structural perspective on MHC class Ib molecules in adaptive immunity. Trends Immunol. 2006. 27: 413420.
  • 17
    Pietra, G., Romagnani, C., Mazzarino, P., Falco, M., Millo, E., Moretta, A., Moretta, L. and Mingari, M. C., HLA-E-restricted recognition of cytomegalovirus-derived peptides by human CD8+ cytolytic T lymphocytes. Proc. Natl. Acad. Sci. USA 2003. 100: 1089610901.
  • 18
    Chiang, E. Y. and Stroynowski, I., A nonclassical MHC class I molecule restricts CTL-mediated rejection of a syngeneic melanoma tumor. J. Immunol. 2004. 173: 43944401.
  • 19
    Chiang, E. Y. and Stroynowski, I., Protective immunity against disparate tumors is mediated by a nonpolymorphic MHC class I molecule. J. Immunol. 2005. 174: 53675374.
  • 20
    Hoare, H. L., Sullivan, L. C., Pietra, G., Clements, C. S., Lee, E. J., Ely, L. K., Beddoe, T. et al., Structural basis for a major histocompatibility complex class Ib-restricted T cell response. Nat. Immunol. 2006. 7: 256264.
  • 21
    Groh, V., Rhinehart, R., Secrist, H., Bauer, S., Grabstein, K. H. and Spies T., Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc. Natl. Acad. Sci. USA 1999. 96: 68796884.
  • 22
    Seliger, B., Abken, H. and Ferrone, S., HLA-G and MIC expression in tumors and their role in anti-tumor immunity. Trends Immunol. 2003. 24: 8287.
  • 23
    Gleimer, M. and Parham, P., Stress management: MHC class I and class I-like molecules as reporters of cellular stress. Immunity 2003. 19: 469477.
  • 24
    Flajnik, M. F. and Kasahara, M., Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system. Immunity 2001. 15: 351362.
  • 25
    Flajnik, M. F., Kashahara, M., Shum, B. P., Salter-Cid, B. L., Taylor, E. and Du Pasquier, L., A novel type of class I gene organization in vertebrates: A large family of non-MHC-linked class I genes is expressed at the RNA level in the amphibian Xenopus. EMBO J. 1993. 12: 43854396.
  • 26
    Courtet, M., Flajnik, M. and Du Pasquier, L., Major histocompatibility complex and immunoglobulin loci visualized by in situ hybridization on Xenopus chromosomes. Dev. Comp. Immunol. 2001. 25: 149157.
  • 27
    Robert, J., Guiet, C. and Du Pasquier, L., Lymphoid tumors of Xenopus laevis with different capacities for growth in larvae and adults. Dev. Immunol. 1994. 3: 297307.
  • 28
    Salter-Cid, L., Nonaka, M. and Flajnik, M. F., Expression of MHC class Ia and class Ib during ontogeny: High expression in epithelia and coregulation of class Ia and lmp7 genes. J. Immunol. 1998. 160: 28532861.
  • 29
    Horton, T. L., Minter, R., Stewart, R., Ritchie, P., Watson, M. D. and Horton, J. D., Xenopus NK cells identified by novel monoclonal antibodies. Eur. J. Immunol. 2000. 30: 604613.
  • 30
    Rau, L., Cohen, N. and Robert, J., MHC restricted and unrestricted CD8 T cells: an evolutionary perspective. Transplantation 2001. 72: 18301835.
  • 31
    Tajima, A., Tanaka, T., Ebata, T., Takeda, K., Kawasaki, A., Kelly, J. M., Darcy, P. K. et al., Blastocyst MHC, a putative murine homologue of HLA-G, protects TAP-deficient tumor cells from natural killer cell-mediated rejection in vivo. J. Immunol. 2003. 171: 17151721.
  • 32
    Algarra, I., Garcia-Lora, A., Cabrera, T., Ruiz-Cabello, F. and Garrido, F., The selection of tumor variants with altered expression of classical and nonclassical MHC class I molecules: implications for tumor immune escape. Cancer Immunol. Immunother. 2004. 53: 904910.
  • 33
    Marin, R., Ruiz-Cabello, F., Pedrinaci, S., Mendez, R., Jimenez, P., Geraghty, D. E. and Garrido, F., Analysis of HLA-E expression in human tumors. Immunogenetics 2003. 54: 767775.
  • 34
    Urdahl, K. B., Sun, J. C. and Bevan, M. J., Positive selection of MHC class Ib-restricted CD8+ T cells on hematopoietic cells. Nat. Immunol. 2002. 3: 772779.
  • 35
    Robert, J., Gantress, J., Cohen, N. and Maniero, G. D., Xenopus as a model system to study evolution of hsp-immune system interactions. In Srivastava, P. K. (Ed.) Methods: a companion to methods in enzymology (HSP-immune system interactions). Academic Press, San Diego 2004pp 4253.
  • 36
    Stewart, R., Ohta, Y., Minter, R., Gibbons, T., Horton, T. L., Ritchie, P., Horton, J. D. et al., Cloning and characterization of Xenopus beta2microglobulin. Dev. Comp. Immunol. 2005. 29: 723732.
  • 37
    Flajnik, M. F., Taylor, E., Canel, C., Grossberger, D. and Du Pasquier, L., Reagents specific for MHC I antigens of Xenopus. Amer. Zool. 1991. 31: 580591.
  • 38
    Barritt, L. C. and Turpen, J. B., Characterization of lineage restricted forms of a Xenopus CD45 homologue. Dev. Comp. Immunol. 1995. 19: 525536.