• 1
    Rubinfeld, H. and Seger, R., The ERK cascade: a prototype of MAPK signaling. Mol. Biotechnol. 2005. 31: 151174.
  • 2
    Dunn, K. L., Espino, P. S., Drobic, B., He, S. and Davie, J. R., The Ras-MAPK signal transduction pathway, cancer and chromatin remodeling. Biochem. Cell Biol. 2005. 83: 114.
  • 3
    Roux, P. P. and Blenis, J., ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev. 2004. 68: 320344.
  • 4
    Caenepeel, S., Charydczak, G., Sudarsanam, S., Hunter, T. and Manning, G., The mouse kinome: discovery and comparative genomics of all mouse protein kinases. Proc. Natl. Acad. Sci. USA 2004. 101: 1170711712.
  • 5
    McCoy, C. E., Campbell, D. G., Deak, M., Bloomberg, G. B. and Arthur, J. S., MSK1 activity is controlled by multiple phosphorylation sites. Biochem. J. 2005. 387: 507517.
  • 6
    McCoy, C. E., Macdonald, A., Morrice, N. A., Campbell, D. G., Deak, M., Toth, R., McIlrath, J. and Arthur, J. S., Identification of novel phosphorylation sites in MSK1 by precursor ion scanning mass spectrometry. Biochem. J. 2007. 402: 491501
  • 7
    Deak, M., Clifton, A. D., Lucocq, L. M. and Alessi, D. R., Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J. 1998. 17: 44264441.
  • 8
    Arthur, J. S., Fong, A. L., Dwyer, J. M., Davare, M., Reese, E., Obrietan, K. and Impey, S., Mitogen- and stress-activated protein kinase 1 mediates cAMP response element-binding protein phosphorylation and activation by neurotrophins. J. Neurosci. 2004. 24: 43244332.
  • 9
    Wiggin, G. R., Soloaga, A., Foster, J. M., Murray-Tait, V., Cohen, P. and Arthur, J. S., MSK1 and MSK2 are required for the mitogen- and stress-induced phosphorylation of CREB and ATF1 in fibroblasts. Mol. Cell. Biol. 2002. 22: 28712881.
  • 10
    Park, J. M., Greten, F. R., Wong, A., Westrick, R. J., Arthur, J. S., Otsu, K., Hoffmann, A. et al., Signaling pathways and genes that inhibit pathogen-induced macrophage apoptosis--CREB and NF-kappaB as key regulators. Immunity 2005. 23: 319329.
  • 11
    Schuck, S., Soloaga, A., Schratt, G., Arthur, J. S. and Nordheim, A., The kinase MSK1 is required for induction of c-fos by lysophosphatidic acid in mouse embryonic stem cells. BMC Mol. Biol. 2003. 4: 6.
  • 12
    Darragh, J., Soloaga, A., Beardmore, V. A., Wingate, A. D., Wiggin, G. R., Peggie, M. and Arthur, J. S., MSK are required for the transcription of the nuclear orphan receptors Nur77, Nurr1 and Nor1 downstream of MAPK signalling. Biochem. J. 2005. 390: 749759.
  • 13
    Dyson, M. H., Thomson, S., Inagaki, M., Goto, H., Arthur, S. J., Nightingale, K., Iborra, F. J. and Mahadevan, L. C., MAP kinase-mediated phosphorylation of distinct pools of histone H3 at S10 or S28 via mitogen- and stress-activated kinase 1/2. J. Cell. Sci. 2005. 118: 22472259.
  • 14
    Soloaga, A., Thomson, S., Wiggin, G. R., Rampersaud, N., Dyson, M. H., Hazzalin, C. A., Mahadevan, L. C. and Arthur, J. S., MSK2 and MSK1 mediate the mitogen- and stress-induced phosphorylation of histone H3 and HMG-14. EMBO J. 2003. 22: 27882797.
  • 15
    Kruisbeek, A. M., Haks, M. C., Carleton, M., Michie, A. M., Zuniga-Pflucker, J. C. and Wiest, D. L., Branching out to gain control: how the pre-TCR is linked to multiple functions. Immunol. Today 2000. 21: 637644.
  • 16
    Rincon, M., Flavell, R. A. and Davis, R. A., The JNK and P38 MAP kinase signaling pathways in T cell-mediated immune responses. Free Radic. Biol. Med. 2000. 28: 13281337.
  • 17
    Rincon, M. and Pedraza-Alva, G., JNK and p38 MAP kinases in CD4+ and CD8+ T cells. Immunol. Rev. 2003. 192: 131142.
  • 18
    Rincon, M., Flavell, R. A. and Davis, R. J., Signal transduction by MAP kinases in T lymphocytes. Oncogene 2001. 20: 24902497.
  • 19
    Dong, C., Davis, R. J. and Flavell, R. A., MAP kinases in the immune response. Annu. Rev. Immunol. 2002. 20: 5572.
  • 20
    Fischer, A. M., Katayama, C. D., Pages, G., Pouyssegur, J. and Hedrick, S. M., The role of erk1 and erk2 in multiple stages of T cell development. Immunity 2005. 23: 431443.
  • 21
    Mayr, B. and Montminy, M., Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat. Rev. Mol. Cell Biol. 2001. 2: 599609.
  • 22
    Mayall, T. P., Sheridan, P. L., Montminy, M. R. and Jones, K. A., Distinct roles for P-CREB and LEF-1 in TCR alpha enhancer assembly and activation on chromatin templates in vitro. Genes Dev. 1997. 11: 887899.
  • 23
    Anderson, S. J., Miyake, S. and Loh, D. Y., Transcription from a murine T-cell receptor V beta promoter depends on a conserved decamer motif similar to the cyclic AMP response element. Mol. Cell. Biol. 1989. 9: 48354845.
  • 24
    Gao, M. H. and Kavathas, P. B., Functional importance of the cyclic AMP response element-like decamer motif in the CD8 alpha promoter. J. Immunol. 1993. 150: 43764385.
  • 25
    Solomou, E. E., Juang, Y. T. and Tsokos, G. C., Protein kinase C-theta participates in the activation of cyclic AMP-responsive element-binding protein and its subsequent binding to the –180 site of the IL-2 promoter in normal human T lymphocytes. J. Immunol. 2001. 166: 56655674.
  • 26
    Solomou, E. E., Juang, Y. T., Gourley, M. F., Kammer, G. M. and Tsokos, G. C., Molecular basis of deficient IL-2 production in T cells from patients with systemic lupus erythematosus. J. Immunol. 2001. 166: 42164222.
  • 27
    Gupta, A. and Terhorst, C., CD3 delta enhancer. CREB interferes with the function of a murine CD3-delta A binding factor (M delta AF). J. Immunol. 1994. 152: 38953903.
  • 28
    Barton, K., Muthusamy, N., Chanyangam, M., Fischer, C., Clendenin, C. and Leiden, J. M., Defective thymocyte proliferation and IL-2 production in transgenic mice expressing a dominant-negative form of CREB. Nature 1996. 379: 8185.
  • 29
    Zhang, F., Rincon, M., Flavell, R. A. and Aune, T. M., Defective Th function induced by a dominant-negative cAMP response element binding protein mutation is reversed by Bcl-2. J. Immunol. 2000. 165: 17621770.
  • 30
    Johannessen, M., Delghandi, M. P. and Moens, U., What turns CREB on? Cell. Signal. 2004. 16: 12111227.
  • 31
    Grady, G. C., Mason, S. M., Stephen, J., Zuniga-Pflucker, J. C. and Michie, A. M., Cyclic adenosine 5′-monophosphate response element binding protein plays a central role in mediating proliferation and differentiation downstream of the pre-TCR complex in developing thymocytes. J. Immunol. 2004. 173: 18021810.
  • 32
    Yu, C. T., Shih, H. M. and Lai, M. Z., Multiple signals required for cyclic AMP-responsive element binding protein (CREB) binding protein interaction induced by CD3/CD28 costimulation. J. Immunol. 2001. 166: 284292.
  • 33
    Muthusamy, N. and Leiden, J. M., A protein kinase C-, Ras-, and RSK2-dependent signal transduction pathway activates the cAMP-responsive element-binding protein transcription factor following T cell receptor engagement. J. Biol. Chem. 1998. 273: 2284122847.
  • 34
    Hsueh, Y. P., Liang, H. E., Ng, S. Y. and Lai, M. Z., CD28-costimulation activates cyclic AMP-responsive element-binding protein in T lymphocytes. J. Immunol. 1997. 158: 8593.
  • 35
    Davies, S. P., Reddy, H., Caivano, M. and Cohen, P., Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 2000. 351: 95105.
  • 36
    Wingate, A. D., Campbell, D. G., Peggie, M. and Arthur, J. S., Nur77 is phosphorylated in cells by RSK in response to mitogenic stimulation. Biochem. J. 2006. 393: 715724.
  • 37
    Silva-Santos, B., Pennington, D. J. and Hayday, A. C., Lymphotoxin-mediated regulation of gammadelta cell differentiation by alphabeta T cell progenitors. Science 2005. 307: 925928.
  • 38
    Hughes, J. P., Staton, P. C., Wilkinson, M. G., Strijbos, P. J., Skaper, S. D., Arthur, J. S. and Reith, A. D., Mitogen and stress response kinase-1 (MSK1) mediates excitotoxic induced death of hippocampal neurones. J. Neurochem. 2003. 86: 2532.
  • 39
    Arthur, J. S. and Cohen, P., MSK1 is required for CREB phosphorylation in response to mitogens in mouse embryonic stem cells. FEBS Lett. 2000. 482: 4448.
  • 40
    Martinez-Gonzalez, J. and Badimon, L., The NR4A subfamily of nuclear receptors: new early genes regulated by growth factors in vascular cells. Cardiovasc. Res. 2005. 65: 609618.
  • 41
    Winoto, A. and Littman, D. R., Nuclear hormone receptors in T lymphocytes. Cell 2002. 109 Suppl: S5766.
  • 42
    Clayton, A. L. and Mahadevan, L. C., MAP kinase-mediated phosphoacetylation of histone H3 and inducible gene regulation. FEBS Lett. 2003. 546: 5158.
  • 43
    Patwardhan, S., Gashler, A., Siegel, M. G., Chang, L. C., Joseph, L. J., Shows, T. B., Le Beau, M. M. and Sukhatme, V. P., EGR3, a novel member of the Egr family of genes encoding immediate-early transcription factors. Oncogene 1991. 6: 917928.
  • 44
    Mages, H. W., Baag, R., Steiner, B. and Kroczek, R. A., Utilization of an NF-ATp binding promoter element for EGR3 expression in T cells but not fibroblasts provides a molecular model for the lymphoid cell-specific effect of cyclosporin A. Mol. Cell. Biol. 1998. 18: 71577165.
  • 45
    Ahn, S., Olive, M., Aggarwal, S., Krylov, D., Ginty, D. D. and Vinson, C., A dominant-negative inhibitor of CREB reveals that it is a general mediator of stimulus-dependent transcription of c-fos. Mol. Cell. Biol. 1998. 18: 967977.
  • 46
    Baumann, S., Kyewski, B., Bleckmann, S. C., Greiner, E., Rudolph, D., Schmid, W., Ramsay, R. G. et al., CREB function is required for normal thymic cellularity and post-irradiation recovery. Eur. J. Immunol. 2004. 34: 19611971.
  • 47
    Buchwalter, G., Gross, C. and Wasylyk, B., Ets ternary complex transcription factors. Gene 2004. 324: 114.
  • 48
    Muller, J. M., Cahill, M. A., Nordheim, A. and Baeuerle, P. A., The transcription factor TCF/Elk-1: a nuclear sensor of changes in the cellular redox status. Adv. Exp. Med. Biol. 1996. 387: 7784.
  • 49
    Treisman, R., Regulation of transcription by MAP kinase cascades. Curr. Opin. Cell Biol. 1996. 8: 205215.
  • 50
    Rudolph, D., Tafuri, A., Gass, P., Hammerling, G. J., Arnold, B. and Schutz, G., Impaired fetal T cell development and perinatal lethality in mice lacking the cAMP response element binding protein. Proc. Natl. Acad. Sci. USA 1998. 95: 44814486.