• 1
    Surcel, H. M., Troye-Blomberg, M., Paulie, S., Andersson, G., Moreno, C., Pasvol, G. and Ivanyi, J., Th1/Th2 profiles in tuberculosis, based on the proliferation and cytokine response of blood lymphocytes to mycobacterial antigens. Immunology 1994. 81: 171176.
  • 2
    Dieli, F., Singh, M., Spallek, R., Romano, A., Titone, L., Sireci, G., Friscia, G. et al., Change of Th0 to Th1 cell-cytokine profile following tuberculosis chemotherapy. Scand. J. Immunol. 2000. 52: 96102.
  • 3
    Rook, G. A., Hernandez-Pando, R., Dheda, K. and Teng Seah, G., IL-4 in tuberculosis: implications for vaccine design. Trends Immunol. 2004. 25: 483488.
  • 4
    Gruppo, V. and Orme, I. M., Dose of BCG does not influence the efficient generation of protective immunity in mice challenged with Mycobacterium tuberculosis. Tuberculosis (Edinb) 2002. 82: 267273.
  • 5
    Flores-Villanueva, P. O., Ruiz-Morales, J. A., Song, C. H., Flores, L. M., Jo, E. K., Montano, M., Barnes, P. F. et al., A functional promoter polymorphism in monocyte chemoattractant protein-1 is associated with increased susceptibility to pulmonary tuberculosis. J. Exp. Med. 2005. 202: 16491658.
  • 6
    Fenhalls, G., Wong, A., Bezuidenhout, J., van Helden, P., Bardin, P. and Lukey, P. T., In situ production of gamma interferon, interleukin-4, and tumor necrosis factor alpha mRNA in human lung tuberculous granulomas. Infect. Immun. 2000. 68: 28272836.
  • 7
    Hernandez-Pando, R., Aguilar, D., Hernandez, M. L., Orozco, H. and Rook, G., Pulmonary tuberculosis in BALB/c mice with non-functional IL-4 genes: changes in the inflammatory effects of TNF-alpha and in the regulation of fibrosis. Eur. J. Immunol. 2004. 34: 174183.
  • 8
    Sugawara, I., Yamada, H., Mizuno, S. and Iwakura, Y., IL-4 is required for defense against mycobacterial infection. Microbiol. Immunol. 2000. 44: 971979.
  • 9
    Erb, K. J., Kirman, J., Delahunt, B., Chen, W. and Le Gros, G., IL-4, IL-5 and IL-10 are not required for the control of M. bovis-BCG infection in mice. Immunol. Cell Biol. 1998. 76: 4146.
  • 10
    North, R. J., Mice incapable of making IL-4 or IL-10 display normal resistance to infection with Mycobacterium tuberculosis. Clin. Exp. Immunol. 1998. 113: 5558.
  • 11
    Jung, Y. J., LaCourse, R., Ryan, L. and North, R. J., Evidence inconsistent with a negative influence of T helper 2 cells on protection afforded by a dominant T helper 1 response against Mycobacterium tuberculosis lung infection in mice. Infect. Immun. 2002. 70: 64366443.
  • 12
    Kahnert, A., Seiler, P., Stein, M., Bandermann, S., Hahnke, K., Mollenkopf, H. and Kaufmann, S. H., Alternative activation deprives macrophages of a coordinated defense program to Mycobacterium tuberculosis. Eur. J. Immunol. 2006. 36: 631647.
  • 13
    Gordon, S., Alternative activation of macrophages. Nat. Rev. Immunol. 2003. 3: 2335.
  • 14
    Mosser, D. M., The many faces of macrophage activation. J. Leukoc. Biol. 2003. 73: 209212.
  • 15
    Schlesinger, L. S., Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J. Immunol. 1993. 150: 29202930.
  • 16
    Aderem, A. and Underhill, D. M., Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 1999. 17: 593623.
  • 17
    Zhang, J., Tachado, S. D., Patel, N., Zhu, J., Imrich, A., Manfruelli, P., Cushion, M. et al., Negative regulatory role of mannose receptors on human alveolar macrophage proinflammatory cytokine release in vitro. J. Leukoc. Biol. 2005. 78: 665674.
  • 18
    Bogdan, C., Vodovotz, Y., Paik, J., Xie, Q. W. and Nathan, C., Mechanism of suppression of nitric oxide synthase expression by interleukin-4 in primary mouse macrophages. J. Leukoc. Biol. 1994. 55: 227233.
  • 19
    Donnelly, R. P., Fenton, M. J., Kaufman, J. D. and Gerrard, T. L., IL-1 expression in human monocytes is transcriptionally and posttranscriptionally regulated by IL-4. J Immunol 1991. 146: 34313436.
  • 20
    Kang, P. B., Azad, A. K., Torrelles, J. B., Kaufman, T. M., Beharka, A., Tibesar, E., DesJardin, L. E. and Schlesinger, L. S., The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis. J. Exp. Med. 2005. 202: 987999.
  • 21
    Cooper, A. M., Adams, L. B., Dalton, D. K., Appelberg, R. and Ehlers, S., IFN-gamma and NO in mycobacterial disease: new jobs for old hands. Trends Microbiol. 2002. 10: 221226.
  • 22
    Cardona, P. J., Gordillo, S., Diaz, J., Tapia, G., Amat, I., Pallares, A., Vilaplana, C. et al., Widespread bronchogenic dissemination makes DBA/2 mice more susceptible than C57BL/6 mice to experimental aerosol infection with Mycobacterium tuberculosis. Infect. Immun. 2003. 71: 58455854.
  • 23
    Reljic, R., Clark, S. O., Williams, A., Falero-Diaz, G., Singh, M., Challacombe, S., Marsh, P. D. and Ivanyi, J., Intranasal IFNgamma extends passive IgA antibody protection of mice against Mycobacterium tuberculosis lung infection. Clin. Exp. Immunol. 2006. 143: 467473.
  • 24
    Leemans, J. C., Thepen, T., Weijer, S., Florquin, S., van Rooijen, N., van de Winkel, J. G. and van der Poll, T., Macrophages play a dual role during pulmonary tuberculosis in mice. J. Infect. Dis. 2005. 191: 6574.
  • 25
    Williams, A., Reljic, R., Naylor, I., Clark, S. O., Falero-Diaz, G., Singh, M., Challacombe, S. et al., Passive protection with immunoglobulin A antibodies against tuberculous early infection of the lungs. Immunology 2004. 111: 328333.
  • 26
    Coffman, R. L., Chatelain, R., Leal, L. M. and Varkila, K., Leishmania major infection in mice: a model system for the study of CD4+ T-cell subset differentiation. Res. Immunol. 1991. 142: 3640.
  • 27
    Brett, S. J. and Ivanyi, J., Genetic influences on the immune repertoire following tuberculous infection in mice. Immunology 1990. 71: 113119.
  • 28
    Huygen, K., Ljungqvist, L., ten Berg, R. and Van Vooren, J. P., Repertoires of antibodies to culture filtrate antigens in different mouse strains infected with Mycobacterium bovis BCG. Infect. Immun. 1990. 58: 21922197.
  • 29
    Orrell, J. M., Brett, S. J., Ivanyi, J., Coghill, G., Grant, A. and Beck, J. S., Measurement of the immunoperoxidase staining of macrophages within liver granulomata of mice infected with Mycobacterium tuberculosis. Anal. Quant. Cytol. Histol. 1992. 14: 451458.
  • 30
    Raveh, D., Kruskal, B. A., Farland, J. and Ezekowitz, R. A., Th1 and Th2 cytokines cooperate to stimulate mannose-receptor-mediated phagocytosis. J. Leukoc. Biol. 1998. 64: 108113.
  • 31
    Montaner, L. J., da Silva, R. P., Sun, J., Sutterwala, S., Hollinshead, M., Vaux, D. and Gordon, S., Type 1 and type 2 cytokine regulation of macrophage endocytosis: differential activation by IL-4/IL-13 as opposed to IFN-gamma or IL-10. J. Immunol. 1999. 162: 46064613.
  • 32
    Linehan, S. A., Coulson, P. S., Wilson, R. A., Mountford, A. P., Brombacher, F., Martinez-Pomares, L. and Gordon, S., IL-4 receptor signaling is required for mannose receptor expression by macrophages recruited to granulomata but not resident cells in mice infected with Schistosoma mansoni. Lab. Invest. 2003. 83: 12231231.
  • 33
    Ernst, J. D., Macrophage receptors for Mycobacterium tuberculosis. Infect. Immun. 1998. 66: 12771281.
  • 34
    Nemoto, Y., Otsuka, T., Niiro, H., Izuhara, K., Yamaoka, K., Nakashima, H. and Niho, Y., Differential effects of interleukin-4 and interleukin-10 on nitric oxide production by murine macrophages. Inflamm. Res. 1999. 48: 643650.
  • 35
    Weiss, G., Bogdan, C. and Hentze, M. W., Pathways for the regulation of macrophage iron metabolism by the anti-inflammatory cytokines IL-4 and IL-13. J. Immunol. 1997. 158: 420425.
  • 36
    Cipriano, I. M., Mariano, M., Freymuller, E. and Carneiro, C. R., Murine macrophages cultured with IL-4 acquire a phenotype similar to that of epithelioid cells from granulomatous inflammation. Inflammation 2003. 27: 201211.
  • 37
    Dieli, F., Taniguchi, M., Kronenberg, M., Sidobre, S., Ivanyi, J., Fattorini, L., Iona, E. et al., An anti-inflammatory role for V alpha 14 NK T cells in Mycobacterium bovis bacillus Calmette-Guerin-infected mice. J. Immunol. 2003. 171: 19611968.
  • 38
    Reljic, R., Williams, A. and Ivanyi, J., Mucosal immunotherapy of tuberculosis: is there a value in passive IgA? Tuberculosis (Edinb) 2006. 86: 179190.
  • 39
    Otten, M. A. and van Egmond, M., The Fc receptor for IgA (FcalphaRI, CD89). Immunol. Lett. 2004. 92: 2331.
  • 40
    Hellwig, S. M., van Spriel, A. B., Schellekens, J. F., Mooi, F. R. and van de Winkel, J. G., Immunoglobulin A-mediated protection against Bordetella pertussis infection. Infect. Immun. 2001. 69: 48464850.
  • 41
    Falero-Diaz, G., Challacombe, S., Rahman, D., Mistry, M., Douce, G., Dougan, G., Acosta, A. and Ivanyi, J., Transmission of IgA and IgG monoclonal antibodies to mucosal fluids following intranasal or parenteral delivery. Int. Arch. Allergy Immunol. 2000. 122: 143150.
  • 42
    Teitelbaum, R., Glatman-Freedman, A., Chen, B., Robbins, J. B., Unanue, E., Casadevall, A. and Bloom, B. R., A mAb recognizing a surface antigen of Mycobacterium tuberculosis enhances host survival. Proc. Natl. Acad. Sci. USA 1998. 95: 1568815693.
  • 43
    Hamasur, B., Haile, M., Pawlowski, A., Schroder, U., Kallenius, G. and Svenson, S. B., A mycobacterial lipoarabinomannan specific monoclonal antibody and its F(ab') fragment prolong survival of mice infected with Mycobacterium tuberculosis. Clin. Exp. Immunol. 2004. 138: 3038.
  • 44
    Chambers, M. A., Gavier-Widen, D. and Hewinson, R. G., Antibody bound to the surface antigen MPB83 of Mycobacterium bovis enhances survival against high dose and low dose challenge. FEMS Immunol. Med. Microbiol. 2004. 41: 93100.
  • 45
    Olleros, M. L., Guler, R., Vesin, D., Parapanov, R., Marchal, G., Martinez-Soria, E., Corazza, N. et al., Contribution of transmembrane tumor necrosis factor to host defense against Mycobacterium bovis bacillus Calmette-guerin and Mycobacterium tuberculosis infections. Am. J. Pathol. 2005. 166: 11091120.
  • 46
    Saukkonen, J. J., Bazydlo, B., Thomas, M., Strieter, R. M., Keane, J. and Kornfeld, H., Beta-chemokines are induced by Mycobacterium tuberculosis and inhibit its growth. Infect. Immun. 2002. 70: 16841693.
  • 47
    Skwor, T. A., Sedberry Allen, S., Mackie, J. T., Russell, K., Berghman, L. R. and McMurray, D. N., BCG vaccination of guinea pigs modulates Mycobacterium tuberculosis-induced CCL5 (RANTES) production in vitro and in vivo. Tuberculosis (Edinb) 2006. 86: 419429.
  • 48
    Chensue, S. W., Warmington, K. S., Allenspach, E. J., Lu, B., Gerard, C., Kunkel, S. L. and Lukacs, N. W., Differential expression and cross-regulatory function of RANTES during mycobacterial (type 1) and schistosomal (type 2) antigen-elicited granulomatous inflammation. J. Immunol. 1999. 163: 165173.
  • 49
    Algood, H. M. and Flynn, J. L., CCR5-deficient mice control Mycobacterium tuberculosis infection despite increased pulmonary lymphocytic infiltration. J. Immunol. 2004. 173: 32873296.
  • 50
    Badewa, A. P., Quinton, L. J., Shellito, J. E. and Mason, C. M., Chemokine receptor 5 and its ligands in the immune response to murine tuberculosis. Tuberculosis (Edinb) 2005. 85: 185195.
  • 51
    Steinke, J. W. and Borish, L., Th2 cytokines and asthma. Interleukin-4: its role in the pathogenesis of asthma, and targeting it for asthma treatment with interleukin-4 receptor antagonists. Respir. Res. 2001. 2: 6670.
  • 52
    Hart, T. K., Blackburn, M. N., Brigham-Burke, M., Dede, K., Al-Mahdi, N., Zia-Amirhosseini, P. and Cook, R. M., Preclinical efficacy and safety of pascolizumab (SB 240683): a humanized anti-interleukin-4 antibody with therapeutic potential in asthma. Clin. Exp. Immunol. 2002. 130: 93100.
  • 53
    van Crevel, R., Karyadi, E., Preyers, F., Leenders, M., Kullberg, B. J., Nelwan, R. H. and van der Meer, J. W., Increased production of interleukin 4 by CD4+ and CD8+ T cells from patients with tuberculosis is related to the presence of pulmonary cavities. J. Infect. Dis. 2000. 181: 11941197.
  • 54
    Rook, G. A., Dheda, K. and Zumla, A., Do successful tuberculosis vaccines need to be immunoregulatory rather than merely Th1-boosting? Vaccine 2005. 23: 21152120.
  • 55
    Elias, D., Akuffo, H., Pawlowski, A., Haile, M., Schon, T. and Britton, S., Schistosoma mansoni infection reduces the protective efficacy of BCG vaccination against virulent Mycobacterium tuberculosis. Vaccine 2005. 23: 13261334.
  • 56
    Demissie, A., Wassie, L., Abebe, M., Aseffa, A., Rook, G., Zumla, A., Andersen, P. and Doherty, T. M., The 6-kilodalton early secreted antigenic target-responsive, asymptomatic contacts of tuberculosis patients express elevated levels of interleukin-4 and reduced levels of gamma interferon. Infect. Immun. 2006. 74: 28172822.
  • 57
    Sichletidis, L., Settas, L., Spyratos, D., Chloros, D. and Patakas, D., Tuberculosis in patients receiving anti-TNF agents despite chemoprophylaxis. Int. J. Tuberc. Lung Dis. 2006. 10: 11271132.
  • 58
    Guirado, E., Amat, I., Gil, O., Diaz, J., Arcos, V., Caceres, N., Ausina, V. and Cardona, P. J., Passive serum therapy with polyclonal antibodies against Mycobacterium tuberculosis protects against post-chemotherapy relapse of tuberculosis infection in SCID mice. Microbes Infect. 2006. 8: 12521259.