• Antibodies;
  • Mucosal immunity;
  • Vaccination


Intranasal (i.n.) immunization aims to induce local as well as systemic immune responses. In the present study, we assessed a vaccine platform based on virus-like particles (VLP) derived from the RNA phage Qβ for i.n. immunization. We found that both i.n. and subcutaneous (s.c.) administration of Qβ-VLP elicited strong and comparable specific IgG responses in serum and lung. Surprisingly, both routes also induced high levels of specific IgA in serum. In contrast, only i.n. administration of Qβ-VLP resulted in local IgA production in the lung. Efficient induction of B cell responses by i.n. administration of VLP was further supported by the presence of large numbers of germinal centers (GC) as well as memory B cells in the spleen and plasma cells in the bone marrow. Results obtained for the VLP itself could be extended to an antigen covalently attached to it. Specifically, i.n. immunization of mice with VLP displaying the influenza virus derived ectodomain of the M2 protein resulted in strong M2-specific antibody responses as well as anti-viral protection. In contrast, i.n. immunization with VLP displaying p33 peptide, the major CTL epitope of lymphocytic choriomeningitis virus, induced relatively inefficient cytotoxic T cell responses, resulting in low numbers of specific T cells and poor effector cell differentiation. Taken together, these results suggest that effective antibody-based vaccines are achievable by i.n. administration of Qβ-VLP displaying specific antigens.