• 1
    Theofilopoulos, A. N. and Dixon, F. J., Murine models of systemic lupus erythematosus. Adv. Immunol. 1985. 37: 269390.
  • 2
    Izui, S., McConahey, P. J. and Dixon, F. J., Increased spontaneous polyclonal activation of B lymphocytes in mice with spontaneous autoimmune disease. J. Immunol. 1978. 121: 22132219.
  • 3
    Wangel, A. G., Milton, A. and Egan, J. B., Spontaneous plaque forming cells in the peripheral blood of patients with systemic lupus erythematosus. Clin. Exp. Immunol. 1982. 49: 4149.
  • 4
    Cohen, P. L. and Ziff, M., Abnormal polyclonal B cell activation in NZB/NZW F1 mice. J. Immunol. 1977. 119: 15341537.
  • 5
    Manny, N., Datta, S. K. and Schwartz, R. S., Synthesis of IgM by cells of NZB and SWR mice and their crosses. J. Immunol. 1979. 122: 12201227.
  • 6
    Moutsopoulos, H. M., Boehm-Truitt, M., Kassan, S. S. and Chused, T. M., Demonstration of activation of B lymphocytes in New Zealand Black mice at birth by an immunoradiometric assay for murine IgM. J. Immunol. 1977. 119: 16391644.
  • 7
    Raveche, E. S., Steinberg, A. D., DeFranco, A. L. and Tjio, J. H., Cell cycle analysis of lymphocyte activation in normal and autoimmune strains of mice. J. Immunol. 1982. 129: 12191226.
  • 8
    Wither, J. E., Roy, V. and Brennan, L. A., Activated B cells express increased levels of costimulatory molecules in young autoimmune NZB and (NZB × NZW)F(1) mice. Clin. Immunol. 2000. 94: 5163.
  • 9
    Wither, J. E., Paterson, A. D. and Vukusic, B., Genetic dissection of B cell traits in New Zealand Black mice. The expanded population of B cells expressing up-regulated costimulatory molecules shows linkage to Nba2. Eur. J. Immunol. 2000. 30: 356365.
  • 10
    Kikuchi, S., Fossati-Jimack, L., Moll, T., Amano, H., Amano, E., Ida, A., Ibnou-Zekri, N. et al., Differential role of three major New Zealand Black-derived loci linked with Yaa-induced murine lupus nephritis. J. Immunol. 2005. 174: 11111117.
  • 11
    Tucker, R. M., Vyse, T. J., Rozzo, S., Roark, C. L., Izui, S. and Kotzin, B. L., Genetic control of glycoprotein 70 autoantigen production and its influence on immune complex levels and nephritis in murine lupus. J. Immunol. 2000. 165: 16651672.
  • 12
    Wither, J. E., Loh, C., Lajoie, G., Heinrichs, S., Cai, Y. C., Bonventi, G. and MacLeod, R., Colocalization of expansion of the splenic marginal zone population with abnormal B cell activation and autoantibody production in B6 mice with an introgressed New Zealand Black chromosome 13 interval. J. Immunol. 2005. 175: 43094319.
  • 13
    Klinman, D. M., Polyclonal B cell activation in lupus-prone mice precedes and predicts the development of autoimmune disease. J. Clin. Invest. 1990. 86: 12491254.
  • 14
    Merino, R., Iwamoto, M., Fossati, L. and Izui, S., Polyclonal B cell activation arises from different mechanisms in lupus-prone (NZB × NZW)F1 and MRL/MpJ-lpr/lpr mice. J. Immunol. 1993. 151: 65096516.
  • 15
    Mihara, M., Ohsugi, Y., Saito, K., Miyai, T., Togashi, M., Ono, S., Murakami, S. et al., Immunologic abnormality in NZB/NZW F1 mice. Thymus-independent occurrence of B cell abnormality and requirement for T cells in the development of autoimmune disease, as evidenced by an analysis of the athymic nude individuals. J. Immunol. 1988. 141: 8590.
  • 16
    Reininger, L., Radaszkiewicz, T., Kosco, M., Melchers, F. and Rolink, A. G., Development of autoimmune disease in SCID mice populated with long-term “in vitro” proliferating (NZB × NZW)F1 pre-B cells. J. Exp. Med. 1992. 176: 13431353.
  • 17
    Reininger, L., Winkler, T. H., Kalberer, C. P., Jourdan, M., Melchers, F. and Rolink, A. G., Intrinsic B cell defects in NZB and NZW mice contribute to systemic lupus erythematosus in (NZB × NZW)F1 mice. J. Exp. Med. 1996. 184: 853861.
  • 18
    Chen, S. Y., Takeoka, Y., Ansari, A. A., Boyd, R., Klinman, D. M. and Gershwin, M. E., The natural history of disease expression in CD4 and CD8 gene-deleted New Zealand Black (NZB) mice. J. Immunol. 1996. 157: 26762684.
  • 19
    Cariappa, A., Tang, M., Parng, C., Nebelitskiy, E., Carroll, M., Georgopoulos, K. and Pillai, S., The follicular versus marginal zone B lymphocyte cell fate decision is regulated by Aiolos, Btk, and CD21. Immunity 2001. 14: 603615.
  • 20
    Cozine, C. L., Wolniak, K. L. and Waldschmidt, T. J., The primary germinal center response in mice. Curr. Opin. Immunol. 2005. 17: 298302.
  • 21
    Hayakawa, K., Asano, M., Shinton, S. A., Gui, M., Allman, D., Stewart, C. L., Silver, J. and Hardy, R. R., Positive selection of natural autoreactive B cells. Science 1999. 285: 113116.
  • 22
    Martin, F. and Kearney, J. F., Positive selection from newly formed to marginal zone B cells depends on the rate of clonal production, CD19, and Btk. Immunity 2000. 12: 3949.
  • 23
    O'Keefe, T. L., Williams, G. T., Davies, S. L. and Neuberger, M. S., Hyperresponsive B cells in CD22-deficient mice. Science 1996. 274: 798801.
  • 24
    Song, H. and Cerny, J., Functional heterogeneity of marginal zone B cells revealed by their ability to generate both early antibody-forming cells and germinal centers with hypermutation and memory in response to a T-dependent antigen. J. Exp. Med. 2003. 198: 19231935.
  • 25
    Loder, F., Mutschler, B., Ray, R. J., Paige, C. J., Sideras, P., Torres, R., Lamers, M. C. and Carsetti, R., B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. J. Exp. Med. 1999. 190: 7589.
  • 26
    Srivastava, B., Quinn, W. J.,  III, Hazard, K., Erikson, J. and Allman, D., Characterization of marginal zone B cell precursors. J. Exp. Med. 2005. 202: 12251234.
  • 27
    Lewis, G., Rapsomaniki, E., Bouriez, T., Crockford, T., Ferry, H., Rigby, R., Vyse, T., Lambe, T. and Cornall, R., Hyper IgE in New Zealand Black mice due to a dominant-negative CD23 mutation. Immunogenetics 2004. 56: 564571.
  • 28
    Saito, T., Chiba, S., Ichikawa, M., Kunisato, A., Asai, T., Shimizu, K., Yamaguchi, T. et al., Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity 2003. 18: 675685.
  • 29
    Goodnow, C. C., Crosbie, J., Adelstein, S., Lavoie, T. B., Smith-Gill, S. J., Brink, R. A., Pritchard-Briscoe, H. et al., Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature 1988. 334: 676682.
  • 30
    Roy, V., Chang, N. H., Cai, Y., Bonventi, G. and Wither, J., Aberrant IgM signaling promotes survival of transitional T1 B cells and prevents tolerance induction in lupus-prone New Zealand Black mice. J. Immunol. 2005. 175: 73637371.
  • 31
    Brink, R., Goodnow, C. C., Crosbie, J., Adams, E., Eris, J., Mason, D. Y., Hartley, S. B. and Basten, A., Immunoglobulin M and D antigen receptors are both capable of mediating B lymphocyte activation, deletion, or anergy after interaction with specific antigen. J. Exp. Med. 1992. 176: 9911005.
  • 32
    Rathmell, J. C., Townsend, S. E., Xu, J. C., Flavell, R. A. and Goodnow, C. C., Expansion or elimination of B cells in vivo: Dual roles for CD40- and Fas(CD95)-ligands modulated by the B cell antigen receptor. Cell 1996. 87: 319329.
  • 33
    Solvason, N., Wu, W. W., Kabra, N., Wu, X., Lees, E. and Howard, M. C., Induction of cell cycle regulatory proteins in anti-immunoglobulin-stimulated mature B lymphocytes. J. Exp. Med. 1996. 184: 407417.
  • 34
    Jongstra-Bilen, J., Vukusic, B., Boras, K. and Wither, J. E., Resting B cells from autoimmune lupus-prone New Zealand Black and (New Zealand Black × New Zealand White)F1 mice are hyper-responsive to T cell-derived stimuli. J. Immunol. 1997. 159: 58105820.
  • 35
    Renshaw, B. R., Fanslow, W. C.,  III, Armitage, R. J., Campbell, K. A., Liggitt, D., Wright, B., Davison, B. L. and Maliszewski, C. R., Humoral immune responses in CD40 ligand-deficient mice. J. Exp. Med. 1994. 180: 18891900.
  • 36
    Wakeland, E. K., Liu, K., Graham, R. R. and Behrens, T. W., Delineating the genetic basis of systemic lupus erythematosus. Immunity 2001. 15: 397408.
  • 37
    Wykes, M., Poudrier, J., Lindstedt, R. and Gray, D., Regulation of cytoplasmic, surface and soluble forms of CD40 ligand in mouse B cells. Eur. J. Immunol. 1998. 28: 548559.
  • 38
    Oliver, A. M., Martin, F. and Kearney, J. F., IgMhighCD21high lymphocytes enriched in the splenic marginal zone generate effector cells more rapidly than the bulk of follicular B cells. J. Immunol. 1999. 162: 71987207.
  • 39
    Kozono, Y., Abe, R., Kozono, H., Kelly, R. G., Azuma, T. and Holers, V. M., Cross-linking CD21/CD35 or CD19 increases both B7-1 and B7-2 expression on murine splenic B cells. J. Immunol. 1998. 160: 15651572.
  • 40
    Lenschow, D. J., Sperling, A. I., Cooke, M. P., Freeman, G., Rhee, L., Decker, D. C., Gray, G. et al., Differential up-regulation of the B7-1 and B7-2 costimulatory molecules after Ig receptor engagement by antigen. J. Immunol. 1994. 153: 19901997.
  • 41
    Stack, R. M., Lenschow, D. J., Gray, G. S., Bluestone, J. A. and Fitch, F. W., IL-4 treatment of small splenic B cells induces costimulatory molecules B7-1 and B7-2. J. Immunol. 1994. 152: 57235733.
  • 42
    Ding, C., Wang, L., Al-Ghawi, H., Marroquin, J., Mamula, M. and Yan, J., Toll-like receptor engagement stimulates anti-snRNP autoreactive B cells for activation. Eur. J. Immunol. 2006. 36: 20132024.
  • 43
    Marshak-Rothstein, A., Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol. 2006. 6: 823835.
  • 44
    Cherukuri, A., Cheng, P. C. and Pierce, S. K., The role of the CD19/CD21 complex in B cell processing and presentation of complement-tagged antigens. J. Immunol. 2001. 167: 163172.
  • 45
    Thornton, B. P., Vetvicka, V. and Ross, G. D., Natural antibody and complement-mediated antigen processing and presentation by B lymphocytes. J. Immunol. 1994. 152: 17271737.
  • 46
    Braun, D., Caramalho, I. and Demengeot, J., IFN-alpha/beta enhances BCR-dependent B cell responses. Int. Immunol. 2002. 14: 411419.
  • 47
    Belperron, A. A., Dailey, C. M. and Bockenstedt, L. K., Infection-induced marginal zone B cell production of Borrelia hermsii-specific antibody is impaired in the absence of CD1d. J. Immunol. 2005. 174: 56815686.
  • 48
    Mandik-Nayak, L., Racz, J., Sleckman, B. P. and Allen, P. M., Autoreactive marginal zone B cells are spontaneously activated but lymph node B cells require T cell help. J. Exp. Med. 2006. 203: 19851998.
  • 49
    Chang, N. H., MacLeod, R. and Wither, J. E., Autoreactive B cells in lupus-prone New Zealand Black mice exhibit aberrant survival and proliferation in the presence of self-antigen in vivo. J. Immunol. 2004. 172: 15531560.
  • 50
    Thien, M., Phan, T. G., Gardam, S., Amesbury, M., Basten, A., Mackay, F. and Brink, R., Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity 2004. 20: 785798.
  • 51
    Wakeland, E., Morel, L., Achey, K., Yui, M. and Longmate, J., Speed congenics: A classic technique in the fast lane (relatively speaking). Immunol. Today 1997. 18: 472477.