• 1
    Barriere, S. L. and Lowry, S. F., An overview of mortality risk prediction in sepsis. Crit. Care Med. 1995. 23: 376393.
  • 2
    Angus, D. C., Linde-Zwirble, W. T., Lidicker, J., Clermont, G., Carcillo, J. and Pinsky, M. R., Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 2001. 29: 13031310.
  • 3
    Hotchkiss, R. S. and Karl, I. E., The pathophysiology and treatment of sepsis. N. Engl. J. Med. 2003. 348: 138150.
  • 4
    Martin, G. S., Mannino, D. M., Eaton, S. and Moss, M., The epidemiology of sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 2003. 348: 15461554.
  • 5
    Riedemann, N. C., Guo, R. F. and Ward, P. A., The enigma of sepsis. J. Clin. Invest. 2003. 112: 460467.
  • 6
    Bernard, G. R., Vincent, J. L., Laterre, P. F., LaRosa, S. P., Dhainaut, J. F., Lopez-Rodriguez, A., Steingrub, J. S. et al., Efficacy and safety of recombinant human activated protein C for severe sepsis. N. Engl. J. Med. 2001. 344: 699709.
  • 7
    Ness, T. L., Hogaboam, C. M. and Kunkel, S. L., Chemokines: Central mediators of the innate responses to sepsis. Curr. Immunol. Rev. 2005. 1: 237260.
  • 8
    Ness, T. L., Carpenter, K. J., Ewing, J. L., Gerard, C. J., Hogaboam, C. M. and Kunkel, S. L., CCR1 and CC chemokine ligand 5 interactions exacerbate innate immune responses during sepsis. J. Immunol. 2004. 173: 69386948.
  • 9
    Ness, T. L., Ewing, J. L., Hogaboam, C. M. and Kunkel, S. L., CCR4 is a key modulator of innate immune responses. J. Immunol. 2006. 177: 75317539.
  • 10
    Chvatchko, Y., Hoogewerf, A. J., Meyer, A., Alouani, S., Juillard, P., Buser, R., Conquet, F. et al., A key role for CC chemokine receptor 4 in lipopolysaccharide-induced endotoxic shock. J. Exp. Med. 2000. 191: 17551764.
  • 11
    Sica, A., Saccani, A., Borsatti, A., Power, C. A., Wells, T. N., Luini, W., Polentarutti, N., Sozzani, S. and Mantovani, A., Bacterial lipopolysaccharide rapidly inhibits expression of C-C chemokine receptors in human monocytes. J. Exp. Med. 1997. 185: 969974.
  • 12
    Matsukawa, A., Kudoh, S., Sano, G., Maeda, T., Ito, T., Lukacs, N. W., Hogaboam, C. M. et al., Absence of CC chemokine receptor 8 enhances innate immunity during septic peritonitis. FASEB J. 2006. 20: 302304.
  • 13
    Ness, T. L., Hogaboam, C. M., Strieter, R. M. and Kunkel, S. L., Immunomodulatory role of CXCR2 during experimental septic peritonitis. J. Immunol. 2003. 171: 37753784.
  • 14
    Yang, D., Chertov, O., Bykovskaia, S. N., Chen, Q., Buffo, M. J., Shogan, J., Anderson, M. et al., Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 1999. 286: 525528.
  • 15
    Greaves, D. R., Wang, W., Dairaghi, D. J., Dieu, M. C., Saint-Vis, B., Franz-Bacon, K., Rossi, D. et al., CCR6, a CC chemokine receptor that interacts with macrophage inflammatory protein 3alpha and is highly expressed in human dendritic cells. J. Exp. Med. 1997. 186: 837844.
  • 16
    Yang, D., Howard, O. M., Chen, Q. and Oppenheim, J. J., Cutting edge: immature dendritic cells generated from monocytes in the presence of TGF-beta 1 express functional C-C chemokine receptor 6. J. Immunol. 1999. 163: 17371741.
  • 17
    Lukacs, N. W., Prosser, D. M., Wiekowski, M., Lira, S. A. and Cook, D. N., Requirement for the chemokine receptor CCR6 in allergic pulmonary inflammation. J. Exp. Med. 2001. 194: 551555.
  • 18
    Liao, F., Rabin, R. L., Smith, C. S., Sharma, G., Nutman, T. B. and Farber, J. M., CC-chemokine receptor 6 is expressed on diverse memory subsets of T cells and determines responsiveness to macrophage inflammatory protein 3 alpha. J. Immunol. 1999. 162: 186194.
  • 19
    Krzysiek, R., Lefevre, E. A., Bernard, J., Foussat, A., Galanaud, P., Louache, F. and Richard, Y., Regulation of CCR6 chemokine receptor expression and responsiveness to macrophage inflammatory protein-3alpha/CCL20 in human B cells. Blood 2000. 96: 23382345.
  • 20
    Le Borgne, M., Etchart, N., Goubier, A., Lira, S. A., Sirard, J. C., van Rooijen, N., Caux, C. et al., Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo. Immunity 2006. 24: 191201.
  • 21
    Salazar-Gonzalez, R. M., Niess, J. H., Zammit, D. J., Ravindran, R., Srinivasan, A., Maxwell, J. R., Stoklasek, T. et al., CCR6-mediated dendritic cell activation of pathogen-specific T cells in Peyer's patches. Immunity 2006. 24: 623632.
  • 22
    Bracke, K. R., D'Hulst A, I., Maes, T., Moerloose, K. B., Demedts, I. K., Lebecque, S., Joos, G. F. and Brusselle, G. G., Cigarette smoke-induced pulmonary inflammation and emphysema are attenuated in CCR6-deficient mice. J. Immunol. 2006. 177: 43504359.
  • 23
    Al-Aoukaty, A., Rolstad, B., Giaid, A. and Maghazachi, A. A., MIP-3alpha, MIP-3beta and fractalkine induce the locomotion and the mobilization of intracellular calcium, and activate the heterotrimeric G proteins in human natural killer cells. Immunology 1998. 95: 618624.
  • 24
    Cook, D. N., Prosser, D. M., Forster, R., Zhang, J., Kuklin, N. A., Abbondanzo, S. J., Niu, X. D. et al., CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue. Immunity 2000. 12: 495503.
  • 25
    Varona, R., Villares, R., Carramolino, L., Goya, I., Zaballos, A., Gutierrez, J., Torres, M. et al., CCR6-deficient mice have impaired leukocyte homeostasis and altered contact hypersensitivity and delayed-type hypersensitivity responses. J. Clin. Invest. 2001. 107: R3745.
  • 26
    Heiss, L. N., Lancaster, J. R., Jr., Corbett, J. A. and Goldman, W. E., Epithelial autotoxicity of nitric oxide: role in the respiratory cytopathology of pertussis. Proc. Natl. Acad. Sci. USA 1994. 91: 267270.
  • 27
    Fink, M. P., Role of reactive oxygen and nitrogen species in acute respiratory distress syndrome. Curr. Opin. Crit. Care 2002. 8: 611.
  • 28
    Gordon, S., Alternative activation of macrophages. Nat. Rev. Immunol. 2003. 3: 2335.
  • 29
    Remick, D. G. and Ward, P. A., Evaluation of endotoxin models for the study of sepsis. Shock 2005. 24 Suppl 1: 711.
  • 30
    Kaser, A., Ludwiczek, O., Holzmann, S., Moschen, A. R., Weiss, G., Enrich, B., Graziadei, I. et al., Increased expression of CCL20 in human inflammatory bowel disease. J. Clin. Immunol. 2004. 24: 7485.
  • 31
    Demedts, I. K., Bracke, K. R., Van Pottelberge, G. R., Testelmans, D., Verleden, G. M., Vermassen, F. E., Joos, G. F. and Brusselle, G. G., Accumulation of dendritic cells and increased CCL20 levels in the airways of COPD patients. Am. J. Respir. Crit. Care Med. 2007. 175: 9981005
  • 32
    Fujiie, S., Hieshima, K., Izawa, D., Nakayama, T., Fujisawa, R., Ohyanagi, H. and Yoshie, O., Proinflammatory cytokines induce liver and activation-regulated chemokine/macrophage inflammatory protein-3alpha/CCL20 in mucosal epithelial cells through NF-kappaB [correction of NK-kappaB]. Int. Immunol. 2001. 13: 12551263.
  • 33
    West, M. A. and Heagy, W., Endotoxin tolerance: a review. Crit. Care Med. 2002. 30: S6473.
  • 34
    Rossi, D. and Zlotnik, A., The biology of chemokines and their receptors. Annu. Rev. Immunol. 2000. 18: 217242.
  • 35
    Rot, A. and von Andrian, U. H., Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu. Rev. Immunol. 2004. 22: 891928.
  • 36
    Serbina, N. V. and Pamer, E. G., Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat. Immunol. 2006. 7: 311317.
  • 37
    Tsou, C. L., Peters, W., Si, Y., Slaymaker, S., Aslanian, A. M., Weisberg, S. P., Mack, M. and Charo, I. F., Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J. Clin. Invest. 2007. 117: 902909
  • 38
    Boring, L., Gosling, J., Chensue, S. W., Kunkel, S. L., Farese, R. V., Jr., Broxmeyer, H. E. and Charo, I. F., Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J. Clin. Invest. 1997. 100: 25522561.
  • 39
    Charo, I. F. and Peters, W., Chemokine receptor 2 (CCR2) in atherosclerosis, infectious diseases, and regulation of T-cell polarization. Microcirculation 2003. 10: 259264.
  • 40
    Charo, I. F. and Ransohoff, R. M., The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med. 2006. 354: 610621.
  • 41
    Sugiyama, T., Kohara, H., Noda, M. and Nagasawa, T., Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2006. 25: 977988.
  • 42
    Lapidot, T. and Petit, I., Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp. Hematol. 2002. 30: 973981.
  • 43
    Lataillade, J. J., Clay, D., Dupuy, C., Rigal, S., Jasmin, C., Bourin, P. and Le Bousse-Kerdiles, M. C., Chemokine SDF-1 enhances circulating CD34(+) cell proliferation in synergy with cytokines: possible role in progenitor survival. Blood 2000. 95: 756768.
  • 44
    Walley, K. R., Lukacs, N. W., Standiford, T. J., Strieter, R. M. and Kunkel, S. L., Elevated levels of macrophage inflammatory protein 2 in severe murine peritonitis increase neutrophil recruitment and mortality. Infect. Immun. 1997. 65: 38473851.
  • 45
    Lehrer, R. I. and Ganz, T., Defensins of vertebrate animals. Curr. Opin. Immunol. 2002. 14: 96102.
  • 46
    Yang, D., Biragyn, A., Hoover, D. M., Lubkowski, J. and Oppenheim, J. J., Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu. Rev. Immunol. 2004. 22: 181215.
  • 47
    Garcia, J. R., Krause, A., Schulz, S., Rodriguez-Jimenez, F. J., Kluver, E., Adermann, K., Forssmann, U. et al., Human beta-defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. FASEB J. 2001. 15: 18191821.
  • 48
    Yang, D., Biragyn, A., Kwak, L. W. and Oppenheim, J. J., Mammalian defensins in immunity: more than just microbicidal. Trends Immunol. 2002. 23: 291296.
  • 49
    Niyonsaba, F., Iwabuchi, K., Matsuda, H., Ogawa, H. and Nagaoka, I., Epithelial cell-derived human beta-defensin-2 acts as a chemotaxin for mast cells through a pertussis toxin-sensitive and phospholipase C-dependent pathway. Int. Immunol. 2002. 14: 421426.
  • 50
    van Wetering, S., Mannesse-Lazeroms, S. P., van Sterkenburg, M. A. and Hiemstra, P. S., Neutrophil defensins stimulate the release of cytokines by airway epithelial cells: modulation by dexamethasone. Inflamm. Res. 2002. 51: 815.
  • 51
    Chaly, Y. V., Paleolog, E. M., Kolesnikova, T. S., Tikhonov, II, Petratchenko, E. V. and Voitenok, N. N., Neutrophil alpha-defensin human neutrophil peptide modulates cytokine production in human monocytes and adhesion molecule expression in endothelial cells. Eur. Cytokine Netw. 2000. 11: 257266.
  • 52
    Baker, C. C., Chaudry, I. H., Gaines, H. O. and Baue, A. E., Evaluation of factors affecting mortality rate after sepsis in a murine cecal ligation and puncture model. Surgery 1983. 94: 331335.
  • 53
    Evanoff, H. L., Burdick, M. D., Moore, S. A., Kunkel, S. L. and Strieter, R. M., A sensitive ELISA for the detection of human monocyte chemoattractant protein-1 (MCP-1). Immunol. Invest. 1992. 21: 3945.
  • 54
    Foresti, R., Clark, J. E., Green, C. J. and Motterlini, R., Thiol compounds interact with nitric oxide in regulating heme oxygenase-1 induction in endothelial cells. Involvement of superoxide and peroxynitrite anions. J. Biol. Chem. 1997. 272: 1841118417.