SEARCH

SEARCH BY CITATION

  • 1
    Ribeiro, J. M., Role of saliva in blood-feeding by arthropods. Annu. Rev. Entomol. 1987. 32: 463478.
  • 2
    Sacks, D. L. and Perkins, P. V., Identification of an infective stage of Leishmania promastigotes. Science 1984. 223: 14171419.
  • 3
    Sacks, D. L. and Perkins, P. V., Development of infective stage Leishmania promastigotes within phlebotomine sand flies. Am. J. Trop. Med. Hyg. 1985. 34: 456459.
  • 4
    Andrade, B. B., Teixeira, C. R., Barral, A. and Barral-Netto, M., Haematophagous arthropod saliva and host defense system: A tale of tear and blood. An. Acad. Bras. Cienc. 2005. 77: 665693.
  • 5
    Ribeiro, J. M., Vector salivation and parasite transmission. Mem. Inst. Oswaldo Cruz 1987. 82 Suppl. 3: 03.
  • 6
    Charlab, R., Valenzuela, J. G., Rowton, E. D. and Ribeiro, J. M., Toward an understanding of the biochemical and pharmacological complexity of the saliva of a hematophagous sand fly Lutzomyia longipalpis. Proc. Natl. Acad. Sci. USA 1999. 96: 1515515160.
  • 7
    Kamhawi, S., The biological and immunomodulatory properties of sand fly saliva and its role in the establishment of Leishmania infections. Microbes Infect. 2000. 2: 17651773.
  • 8
    Kamhawi, S., Belkaid, Y., Modi, G., Rowton, E. and Sacks, D., Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies. Science 2000. 290: 13511354.
  • 9
    Mathews, G. V., Sidjanski, S. and Vanderberg, J. P., Inhibition of mosquito salivary gland apyrase activity by antibodies produced in mice immunized by bites of Anopheles stephensi mosquitoes. Am. J. Trop. Med. Hyg. 1996. 55: 417423.
  • 10
    Mbow, M. L., Bleyenberg, J. A., Hall, L. R. and Titus, R. G., Phlebotomus papatasi sand fly salivary gland lysate down-regulates a Th1, but up-regulates a Th2, response in mice infected with Leishmania major. J. Immunol. 1998. 161: 55715577.
  • 11
    Belkaid, Y., Kamhawi, S., Modi, G., Valenzuela, J., Noben-Trauth, N., Rowton, E., Ribeiro, J. and Sacks, D. L., Development of a natural model of cutaneous leishmaniasis: Powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J. Exp. Med. 1998. 188: 19411953.
  • 12
    Lima, H. C. and Titus, R. G., Effects of sand fly vector saliva on development of cutaneous lesions and the immune response to Leishmania braziliensis in BALB/c mice. Infect. Immun. 1996. 64: 54425445.
  • 13
    Morris, R. V., Shoemaker, C. B., David, J. R., Lanzaro, G. C. and Titus, R. G., Sandfly maxadilan exacerbates infection with Leishmania major and vaccinating against it protects against L. major infection. J. Immunol. 2001. 167: 52265230.
  • 14
    Samuelson, J., Lerner, E., Tesh, R. and Titus, R., A mouse model of Leishmania braziliensis braziliensis infection produced by coinjection with sand fly saliva. J. Exp. Med. 1991. 173: 4954.
  • 15
    Thiakaki, M., Rohousova, I., Volfova, V., Volf, P., Chang, K. P. and Soteriadou, K., Sand fly specificity of saliva-mediated protective immunity in Leishmania amazonensis-BALB/c mouse model. Microbes Infect. 2005. 7: 760766.
  • 16
    Enserink, M., Infectious diseases. Sand fly saliva may be key to new vaccine. Science 2001. 293: 1028.
  • 17
    Requena, J. M., Iborra, S., Carrion, J., Alonso, C. and Soto, M., Recent advances in vaccines for leishmaniasis. Expert Opin. Biol. Ther. 2004. 4: 15051517.
  • 18
    Barral, A., Honda, E., Caldas, A., Costa, J., Vinhas, V., Rowton, E. D., Valenzuela, J. G. et al., Human immune response to sand fly salivary gland antigens: A useful epidemiological marker? Am. J. Trop. Med. Hyg. 2000. 62: 740745.
  • 19
    Gomes, R. B., Brodskyn, C., de Oliveira, C. I., Costa, J., Miranda, J. C., Caldas, A., Valenzuela, J. G. et al., Seroconversion against Lutzomyia longipalpis saliva concurrent with the development of anti-Leishmania chagasi delayed-type hypersensitivity. J. Infect. Dis. 2002. 186: 15301534.
  • 20
    Soares, M. B., Titus, R. G., Shoemaker, C. B., David, J. R. and Bozza, M., The vasoactive peptide maxadilan from sand fly saliva inhibits TNF-alpha and induces IL-6 by mouse macrophages through interaction with the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor. J. Immunol. 1998. 160: 18111816.
  • 21
    Theodos, C. M. and Titus, R. G., Salivary gland material from the sand fly Lutzomyia longipalpis has an inhibitory effect on macrophage function in vitro. Parasite Immunol. 1993. 15: 481487.
  • 22
    Rohousova, I., Volf, P. and Lipoldova, M., Modulation of murine cellular immune response and cytokine production by salivary gland lysate of three sand fly species. Parasite Immunol. 2005. 27: 469473.
  • 23
    Costa, D. J., Favali, C., Clarencio, J., Afonso, L., Conceicao, V., Miranda, J. C., Titus, R. G. et al., Lutzomyia longipalpis salivary gland homogenate impairs cytokine production and costimulatory molecule expression on human monocytes and dendritic cells. Infect. Immun. 2004. 72: 12981305.
  • 24
    Solbach, W. and Laskay, T., The host response to Leishmania infection. Adv. Immunol. 2000. 74: 275317.
  • 25
    Silva, F., Gomes, R., Prates, D., Miranda, J. C., Andrade, B., Barral-Netto, M. and Barral, A., Inflammatory cell infiltration and high antibody production in BALB/c mice caused by natural exposure to Lutzomyia longipalpis bites. Am. J. Trop. Med. Hyg. 2005. 72: 9498.
  • 26
    Leverkus, M., Jochim, R. C., Schad, S., Brocker, E. B., Andersen, J. F., Valenzuela, J. G. and Trautmann, A., Bullous allergic hypersensitivity to bed bug bites mediated by IgE against salivary nitrophorin. J. Invest. Dermatol. 2006. 126: 9196.
  • 27
    Peng, Z., Beckett, A. N., Engler, R. J., Hoffman, D. R., Ott, N. L. and Simons, F. E., Immune responses to mosquito saliva in 14 individuals with acute systemic allergic reactions to mosquito bites. J. Allergy Clin. Immunol. 2004. 114: 11891194.
  • 28
    Demeure, C. E., Brahimi, K., Hacini, F., Marchand, F., Peronet, R., Huerre, M., St.-Mezard, P. et al., Anopheles mosquito bites activate cutaneous mast cells leading to a local inflammatory response and lymph node hyperplasia. J. Immunol. 2005. 174: 39323940.
  • 29
    Teixeira, C. R., Teixeira, M. J., Gomes, R. B., Santos, C. S., Andrade, B. B., Raffaele-Netto, I., Silva, J. S. et al., Saliva from Lutzomyia longipalpis induces CC chemokine ligand 2/monocyte chemoattractant protein-1 expression and macrophage recruitment. J. Immunol. 2005. 175: 83468353.
  • 30
    Belkaid, Y., Valenzuela, J. G., Kamhawi, S., Rowton, E., Sacks, D. L. and Ribeiro, J. M., Delayed-type hypersensitivity to Phlebotomus papatasi sand fly bite: An adaptive response induced by the fly? Proc. Natl. Acad. Sci. USA 2000. 97: 67046709.
  • 31
    Norsworthy, N. B., Sun, J., Elnaiem, D., Lanzaro, G. and Soong, L., Sand fly saliva enhances Leishmania amazonensis infection by modulating interleukin-10 production. Infect. Immun. 2004. 72: 12401247.
  • 32
    Mendez, S., Reckling, S. K., Piccirillo, C. A., Sacks, D. and Belkaid, Y., Role for CD4(+) CD25(+) regulatory T cells in reactivation of persistent leishmaniasis and control of concomitant immunity. J. Exp. Med. 2004. 200: 201210.
  • 33
    Belkaid, Y., The role of CD4(+)CD25(+) regulatory T cells in Leishmania infection. Expert Opin. Biol. Ther. 2003. 3: 875885.
  • 34
    Belkaid, Y., Piccirillo, C. A., Mendez, S., Shevach, E. M. and Sacks, D. L., CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 2002. 420: 502507.
  • 35
    Lerner, E. A., Ribeiro, J. M., Nelson, R. J. and Lerner, M. R., Isolation of maxadilan, a potent vasodilatory peptide from the salivary glands of the sand fly Lutzomyia longipalpis. J. Biol. Chem. 1991. 266: 1123411236.
  • 36
    Qureshi, A. A., Asahina, A., Ohnuma, M., Tajima, M., Granstein, R. D. and Lerner, E. A., Immunomodulatory properties of maxadilan, the vasodilator peptide from sand fly salivary gland extracts. Am. J. Trop. Med. Hyg. 1996. 54: 665671.
  • 37
    Brummer-Korvenkontio, H., Lappalainen, P., Reunala, T. and Palosuo, T., Detection of mosquito saliva-specific IgE and IgG4 antibodies by immunoblotting. J. Allergy Clin. Immunol. 1994. 93: 551555.
  • 38
    Shan, E. Z., Taniguchi, Y., Shimizu, M., Ando, K., Chinzei, Y., Suto, C., Ohtaki, T. et al., Immunoglobulins specific to mosquito salivary gland proteins in the sera of persons with common or hypersensitive reactions to mosquito bites. J. Dermatol. 1995. 22: 411418.
  • 39
    Reunala, T., Brummer-Korvenkontio, H., Palosuo, K., Miyanij, M., Ruiz-Maldonado, R., Love, A., Francois, G. and Palosuo, T., Frequent occurrence of IgE and IgG4 antibodies against saliva of Aedes communis and Aedes aegypti mosquitoes in children. Int. Arch. Allergy Immunol. 1994. 104: 366371.
  • 40
    Reunala, T., Brummer-Korvenkontio, H. and Palosuo, T., Are we really allergic to mosquito bites? Ann. Med. 1994. 26: 301306.
  • 41
    Young, D. G., Perkins, P. V. and Endris, R. G., A larval diet for rearing phlebotomine sandflies (Diptera: Psychodidae). J. Med. Entomol. 1981. 18: 446.
  • 42
    Mosmann, T. R. and Fong, T. A., Specific assays for cytokine production by T cells. J. Immunol. Methods 1989. 116: 151158.