SEARCH

SEARCH BY CITATION

  • 1
    Frieden, T. R., Sterling, T. R., Munsiff, S. S., Watt, C. J. and Dye, C., Tuberculosis. Lancet 2003. 362: 887899.
  • 2
    Cahn, P., Perez, H., Ben, G. and Ochoa, C., Tuberculosis and HIV: a partnership against the most vulnerable. J. Int. Assoc. Physicians AIDS Care (Chic Ill) 2003. 2: 106123.
  • 3
    Espinal, M. A., Kim, S. J., Suarez, P. G., Kam, K. M., Khomenko, A. G., Migliori, G. B., Baez, J. et al., Standard short-course chemotherapy for drug-resistant tuberculosis: treatment outcomes in 6 countries. JAMA 2000. 283: 25372545.
  • 4
    Trunz, B. B., Fine, P. and Dye, C., Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet 2006. 367: 11731180.
  • 5
    Fine, P. E., Variation in protection by BCG: implications of and for heterologous immunity. Lancet 1995. 346: 13391345.
  • 6
    McShane, H., Developing an improved vaccine against tuberculosis. Expert Rev. Vaccines 2004. 3: 299306.
  • 7
    Blanchard, T. J., Alcami, A., Andrea, P. and Smith, G. L., Modified vaccinia virus Ankara undergoes limited replication in human cells and lacks several immunomodulatory proteins: implications for use as a human vaccine. J. Gen. Virol. 1998. 79 (Pt 5): 11591167.
  • 8
    Sutter, G. and Moss, B., Nonreplicating vaccinia vector efficiently expresses recombinant genes. Proc. Natl. Acad. Sci. USA 1992. 89: 1084710851.
  • 9
    Dunachie, S. J., Walther, M., Epstein, J. E., Keating, S., Berthoud, T., Andrews, L., Andersen, R. F. et al., A DNA prime-modified vaccinia virus ankara boost vaccine encoding thrombospondin-related adhesion protein but not circumsporozoite protein partially protects healthy malaria-naive adults against Plasmodium falciparum sporozoite challenge. Infect. Immun. 2006. 74: 59335942.
  • 10
    Goonetilleke, N., Moore, S., Dally, L., Winstone, N., Cebere, I., Mahmoud, A., Pinheiro, S. et al., Induction of multifunctional human immunodeficiency virus type 1 (HIV-1)-specific T cells capable of proliferation in healthy subjects by using a prime-boost regimen of DNA- and modified vaccinia virus Ankara-vectored vaccines expressing HIV-1 Gag coupled to CD8+ T-cell epitopes. J. Virol. 2006. 80: 47174728.
  • 11
    Dorrell, L., Yang, H., Ondondo, B., Dong, T., di Gleria, K., Suttill, A., Conlon, C. et al., Expansion and diversification of virus-specific T cells following immunization of human immunodeficiency virus type 1 (HIV-1)-infected individuals with a recombinant modified vaccinia virus Ankara/HIV-1 Gag vaccine. J. Virol. 2006. 80: 47054716.
  • 12
    Corona Gutierrez, C. M., Tinoco, A., Navarro, T., Contreras, M. L., Cortes, R. R., Calzado, P., Reyes, L. et al., Therapeutic vaccination with MVA E2 can eliminate precancerous lesions (CIN 1, CIN 2, and CIN 3) associated with infection by oncogenic human papillomavirus. Hum. Gene Ther. 2004. 15: 421431.
  • 13
    Belisle, J. T., Vissa, V. D., Sievert, T., Takayama, K., Brennan, P. J. and Besra, G. S., Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science 1997. 276: 14201422.
  • 14
    Abou-Zeid, C., Ratliff, T. L., Wiker, H. G., Harboe, M., Bennedsen, J. and Rook, G. A., Characterization of fibronectin-binding antigens released by Mycobacterium tuberculosis and Mycobacterium bovis BCG. Infect. Immun. 1988. 56: 30463051.
  • 15
    Huygen, K., Content, J., Denis, O., Montgomery, D. L., Yawman, A. M., Deck, R. R., DeWitt, C. M. et al., Immunogenicity and protective efficacy of a tuberculosis DNA vaccine. Nat. Med. 1996. 2: 893898.
  • 16
    Launois, P., DeLeys, R., Niang, M. N., Drowart, A., Andrien, M., Dierckx, P., Cartel, J. L. et al., T-cell-epitope mapping of the major secreted mycobacterial antigen Ag85A in tuberculosis and leprosy. Infect. Immun. 1994. 62: 36793687.
  • 17
    Sable, S. B., Kaur, S., Verma, I. and Khuller, G. K., Immunodominance of low molecular weight secretory polypeptides of Mycobacterium tuberculosis to induce cytotoxic T-lymphocyte response. Vaccine 2005. 23: 49474954.
  • 18
    Smith, S. M., Brookes, R., Klein, M. R., Malin, A. S., Lukey, P. T., King, A. S., Ogg, G. S. et al., Human CD8+ CTL specific for the mycobacterial major secreted antigen 85A. J. Immunol. 2000. 165: 70887095.
  • 19
    Goonetilleke, N. P., McShane, H., Hannan, C. M., Anderson, R. J., Brookes, R. H. and Hill, A. V., Enhanced immunogenicity and protective efficacy against Mycobacterium tuberculosis of bacille Calmette-Guerin vaccine using mucosal administration and boosting with a recombinant modified vaccinia virus Ankara. J. Immunol. 2003. 171: 16021609.
  • 20
    Williams, A., Goonetilleke, N. P., McShane, H., Clark, S. O., Hatch, G., Gilbert, S. C. and Hill, A. V., Boosting with poxviruses enhances Mycobacterium bovis BCG efficacy against tuberculosis in guinea pigs. Infect. Immun. 2005. 73: 38143816.
  • 21
    McShane, H., Pathan, A. A., Sander, C. R., Keating, S. M., Gilbert, S. C., Huygen, K., Fletcher, H. A. et al., Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nat. Med. 2004. 10: 12401244.
  • 22
    De Rosa, S. C., Lu, F. X., Yu, J., Perfetto, S. P., Falloon, J., Moser, S., Evans, T. G. et al., Vaccination in humans generates broad T cell cytokine responses. J. Immunol. 2004. 173: 53725380.
  • 23
    Makedonas, G. and Betts, M. R., Polyfunctional analysis of human t cell responses: importance in vaccine immunogenicity and natural infection. Springer Semin. Immunopathol. 2006. 28: 209219.
  • 24
    Selwyn, P. A., Hartel, D., Lewis, V. A., Schoenbaum, E. E., Vermund, S. H., Klein, R. S., Walker, A. T. et al., A prospective study of the risk of tuberculosis among intravenous drug users with human immunodeficiency virus infection. N. Engl. J. Med. 1989. 320: 545550.
  • 25
    Caruso, A. M., Serbina, N., Klein, E., Triebold, K., Bloom, B. R. and Flynn, J. L., Mice deficient in CD4 T cells have only transiently diminished levels of IFN-gamma, yet succumb to tuberculosis. J. Immunol. 1999. 162: 54075416.
  • 26
    Flynn, J. L. and Chan, J., Immunology of tuberculosis. Annu. Rev. Immunol. 2001. 19: 93129.
  • 27
    Jung, Y. J., LaCourse, R., Ryan, L. and North, R. J., Evidence inconsistent with a negative influence of T helper 2 cells on protection afforded by a dominant T helper 1 response against Mycobacterium tuberculosis lung infection in mice. Infect. Immun. 2002. 70: 64366443.
  • 28
    Pfeffer, K., Biological functions of tumor necrosis factor cytokines and their receptors. Cytokine Growth Factor Rev. 2003. 14: 185191.
  • 29
    Flynn, J. L., Chan, J., Triebold, K. J., Dalton, D. K., Stewart, T. A. and Bloom, B. R., An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 1993. 178: 22492254.
  • 30
    Lammas, D. A., De Heer, E., Edgar, J. D., Novelli, V., Ben-Smith, A., Baretto, R., Drysdale, P. et al., Heterogeneity in the granulomatous response to mycobacterial infection in patients with defined genetic mutations in the interleukin 12-dependent interferon-gamma production pathway. Int. J. Exp. Pathol. 2002. 83: 120.
  • 31
    Roach, D. R., Bean, A. G., Demangel, C., France, M. P., Briscoe, H. and Britton, W. J., TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J. Immunol. 2002. 168: 46204627.
  • 32
    Keane, J., Gershon, S., Wise, R. P., Mirabile-Levens, E., Kasznica, J., Schwieterman, W. D., Siegel, J. N. et al., Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N. Engl. J. Med. 2001. 345: 10981104.
  • 33
    Tully, G., Kortsik, C., Hohn, H., Zehbe, I., Hitzler, W. E., Neukirch, C., Freitag, K. et al., Highly focused T cell responses in latent human pulmonary Mycobacterium tuberculosis infection. J. Immunol. 2005. 174: 21742184.
  • 34
    Brookes, R. H., Pathan, A. A., McShane, H., Hensmann, M., Price, D. A. and Hill, A. V., CD8+ T cell-mediated suppression of intracellular Mycobacterium tuberculosis growth in activated human macrophages. Eur. J. Immunol. 2003. 33: 32933302.
  • 35
    Sousa, A. O., Mazzaccaro, R. J., Russell, R. G., Lee, F. K., Turner, O. C., Hong, S., Van Kaer, L. et al., Relative contributions of distinct MHC class I-dependent cell populations in protection to tuberculosis infection in mice. Proc. Natl. Acad. Sci. USA 2000. 97: 42044208.
  • 36
    Kaufmann, S. H., gamma/delta and other unconventional T lymphocytes: what do they see and what do they do? Proc. Natl. Acad. Sci. USA 1996. 93: 22722279.
  • 37
    Lockhart, E., Green, A. M. and Flynn, J. L., IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J. Immunol. 2006. 177: 46624669.
  • 38
    Rhodes, S. G., Hewinson, R. G. and Vordermeier, H. M., Antigen recognition and immunomodulation by gamma delta T cells in bovine tuberculosis. J. Immunol. 2001. 166: 56045610.
  • 39
    Moody, D. B., Ulrichs, T., Muhlecker, W., Young, D. C., Gurcha, S. S., Grant, E., Rosat, J. P. et al., CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature 2000. 404: 884888.
  • 40
    Perfetto, S. P., Chattopadhyay, P. K. and Roederer, M., Seventeen-colour flow cytometry: unravelling the immune system. Nat. Rev. Immunol. 2004. 4: 648655.
  • 41
    Betts, M. R., Brenchley, J. M., Price, D. A., De Rosa, S. C., Douek, D. C., Roederer, M. and Koup, R. A., Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J. Immunol. Methods 2003. 281: 6578.
  • 42
    Casazza, J. P., Betts, M. R., Price, D. A., Precopio, M. L., Ruff, L. E., Brenchley, J. M., Hill, B. J. et al., Acquisition of direct antiviral effector functions by CMV-specific CD4+ T lymphocytes with cellular maturation. J. Exp. Med. 2006. 203: 28652877.
  • 43
    Leitenberg, D., Novak, T. J., Farber, D., Smith, B. R. and Bottomly, K., The extracellular domain of CD45 controls association with the CD4-T cell receptor complex and the response to antigen-specific stimulation. J. Exp. Med. 1996. 183: 249259.
  • 44
    Appay, V., Dunbar, P. R., Callan, M., Klenerman, P., Gillespie, G. M., Papagno, L., Ogg, G. S. et al., Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat. Med. 2002. 8: 379385.
  • 45
    Brenchley, J. M., Karandikar, N. J., Betts, M. R., Ambrozak, D. R., Hill, B. J., Crotty, L. E., Casazza, J. P. et al., Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood 2003. 101: 27112720.
  • 46
    Sprent, J. and Surh, C. D., T cell memory. Annu. Rev. Immunol. 2002. 20: 551579.
  • 47
    La Gruta, N. L., Turner, S. J. and Doherty, P. C., Hierarchies in cytokine expression profiles for acute and resolving influenza virus-specific CD8+ T cell responses: correlation of cytokine profile and TCR avidity. J. Immunol. 2004. 172: 55535560.
  • 48
    La Gruta, N. L., Doherty, P. C. and Turner, S. J., A correlation between function and selected measures of T cell avidity in influenza virus-specific CD8+ T cell responses. Eur. J. Immunol. 2006. 36: 29512959.
  • 49
    Douek, D. C., Betts, M. R., Brenchley, J. M., Hill, B. J., Ambrozak, D. R., Ngai, K. L., Karandikar, N. J. et al., A novel approach to the analysis of specificity, clonality, and frequency of HIV-specific T cell responses reveals a potential mechanism for control of viral escape. J. Immunol. 2002. 168: 30993104.
  • 50
    Turner, S. J., Doherty, P. C., McCluskey, J. and Rossjohn, J., Structural determinants of T-cell receptor bias in immunity. Nat. Rev. Immunol. 2006. 6: 883894.
  • 51
    Betts, M. R., Nason, M. C., West, S. M., De Rosa, S. C., Migueles, S. A., Abraham, J., Lederman, M. M. et al., HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood 2006. 107: 47814789.
  • 52
    Appay, V., Zaunders, J. J., Papagno, L., Sutton, J., Jaramillo, A., Waters, A., Easterbrook, P. et al., Characterization of CD4(+) CTLs ex vivo. J. Immunol. 2002. 168: 59545958.
  • 53
    Darrah, P. A., Patel, D. T., De Luca, P. M., Lindsay, R. W., Davey, D. F., Flynn, B. J., Hoff, S. T. et al., Multifunctional T(H)1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat. Med. 2007. 13: 843850.
  • 54
    Dalton, D. K., Haynes, L., Chu, C. Q., Swain, S. L. and Wittmer, S., Interferon gamma eliminates responding CD4 T cells during mycobacterial infection by inducing apoptosis of activated CD4 T cells. J. Exp. Med. 2000. 192: 117122.
  • 55
    Benini, J., Ehlers, E. M. and Ehlers, S., Different types of pulmonary granuloma necrosis in immunocompetent vs. TNFRp55-gene-deficient mice aerogenically infected with highly virulent Mycobacterium avium. J. Pathol. 1999. 189: 127137.
  • 56
    Smith, K. A., Interleukin-2: inception, impact, and implications. Science 1988. 240: 11691176.
  • 57
    Waldmann, T. A., Dubois, S. and Tagaya, Y., Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 2001. 14: 105110.
  • 58
    Sallusto, F., Lenig, D., Forster, R., Lipp, M. and Lanzavecchia, A., Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999. 401: 708712.
  • 59
    Harari, A., Vallelian, F., Meylan, P. R. and Pantaleo, G., Functional heterogeneity of memory CD4 T cell responses in different conditions of antigen exposure and persistence. J. Immunol. 2005. 174: 10371045.
  • 60
    Millington, K. A., Innes, J. A., Hackforth, S., Hinks, T. S., Deeks, J. J., Dosanjh, D. P., Guyot-Revol, V. et al., Dynamic relationship between IFN-gamma and IL-2 profile of Mycobacterium tuberculosis-specific T cells and antigen load. J. Immunol. 2007. 178: 52175226.
  • 61
    Chattopadhyay, P. K., Price, D. A., Harper, T. F., Betts, M. R., Yu, J., Gostick, E., Perfetto, S. P. et al., Quantum dot semiconductor nanocrystals for immunophenotyping by polychromatic flow cytometry. Nat. Med. 2006. 12: 972977.
  • 62
    Guarda, G., Hons, M., Soriano, S. F., Huang, A. Y., Polley, R., Martin-Fontecha, A., Stein, J. V. et al., L-selectin-negative CCR7(–) effector and memory CD8(+) T cells enter reactive lymph nodes and kill dendritic cells. Nat. Immunol. 2007. 8: 74352.
  • 63
    Perfetto, S. P., Chattopadhyay, P. K., Lamoreaux, L., Nguyen, R., Ambrozak, D., Koup, R. A. and Roederer, M., Amine reactive dyes: an effective tool to discriminate live and dead cells in polychromatic flow cytometry. J. Immunol. Methods 2006. 313: 199208.
  • 64
    Lyons, A. B. and Parish, C. R., Determination of lymphocyte division by flow cytometry. J. Immunol. Methods 1994. 171: 131137.
  • 65
    Lefranc, M. P., Pommie, C., Ruiz, M., Giudicelli, V., Foulquier, E., Truong, L., Thouvenin-Contet, V. et al., IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev. Comp. Immunol. 2003. 27: 5577.