SEARCH

SEARCH BY CITATION

  • 1
    Sakaguchi, S., Regulatory T cells: Key controllers of immunologic self-tolerance. Cell 2000. 101: 455458.
  • 2
    Gershon, R. K. and Kondo, K., Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 1970. 18: 723737.
  • 3
    Green, D. R., Flood, P. M. and Gershon, R. K., Immunoregulatory T-cell pathways. Annu. Rev. Immunol. 1983. 1: 439463.
  • 4
    Kronenberg, M., Steinmetz, M., Kobori, J., Kraig, E., Kapp, J. A., Pierce, C. W., Sorensen, C. M. et al., RNA transcripts for I-J polypeptides are apparently not encoded between the I-A and I-E subregions of the murine major histocompatibility complex. Proc. Natl. Acad. Sci. USA 1983. 80: 57045708.
  • 5
    Bloom, B. R., Salgame, P. and Diamond, B., Revisiting and revising suppressor T cells. Immunol. Today 1992. 13:131136.
  • 6
    Kappler, J. W., Roehm, N. and Marrack, P., T cell tolerance by clonal elimination in the thymus. Cell 1987. 49: 273280.
  • 7
    Kisielow, P., Bluthmann, H., Staerz, U. D., Steinmetz, M. and von Boehmer, H., Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 1988. 333: 742746.
  • 8
    Goodnow, C. C., Cyster, J. G., Hartley, S. B., Bell, S. E., Cooke, M. P., Healy, J. I., Akkaraju, S. et al., Self-tolerance checkpoints in B lymphocyte development. Adv. Immunol. 1995. 59: 279368.
  • 9
    O'Garra, A. and Murphy, K., Role of cytokines in determining T-lymphocyte function. Curr. Opin. Immunol. 1994. 6: 458466.
  • 10
    Chen, Y., Kuchroo, V. K., Inobe, J., Hafler, D. A. and Weiner, H. L., Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalitis. Science 1994. 265: 12371240.
  • 11
    Groux, H., O'Garra, A., Bigler, M., Rouleau, M., Antonenko, S., de Vries, J. E. and Roncarolo, M. G., A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 1997. 389: 737742.
  • 12
    Nishizuka, Y. and Sakakura, T., Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science 1969. 166: 753755.
  • 13
    Kojima, A. and Prehn, R. T., Genetic susceptibility to post-thymectomy autoimmune diseases in mice. Immunogenetics 1981. 14: 1527.
  • 14
    Penhale, W. J., Farmer, A., McKenna, R. P. and Irvine, W. J., Spontaneous thyroiditis in thymectomized and irradiated Wistar rats. Clin. Exp. Immunol. 1973. 15: 225236.
  • 15
    Penhale, W. J., Stumbles, P. A., Huxtable, C. R., Sutherland, R. J. and Pethick, D. W., Induction of diabetes in PVG/c strain rats by manipulation of the immune system. Autoimmunity 1990. 7: 169179.
  • 16
    Fowell, D. and Mason, D., Evidence that the T cell repertoire of normal rats contains cells with the potential to cause diabetes. Characterization of the CD4+ T cell subset that inhibits this autoimmune potential. J. Exp. Med. 1993. 177: 627636.
  • 17
    Sakaguchi, S., Takahashi, T. and Nishizuka, Y., Study on cellular events in post-thymectomy autoimmune oophoritis in mice. II. Requirement of Lyt-1 cells in normal female mice for the prevention of oophoritis. J. Exp. Med. 1982. 156: 15771586.
  • 18
    Penhale, W. J., Irvine, W. J., Inglis, J. R. and Farmer, A., Thyroiditis in T cell-depleted rats: suppression of the autoallergic response by reconstitution with normal lymphoid cells. Clin. Exp. Immunol. 1976. 25: 616.
  • 19
    Sakaguchi, S., Takahashi, T. and Nishizuka, Y., Study on cellular events in postthymectomy autoimmune oophoritis in mice. I. Requirement of Lyt-1 effector cells for oocytes damage after adoptive transfer. J. Exp. Med. 1982. 156: 15651576.
  • 20
    Sakaguchi, S., Fukuma, K., Kuribayashi, K. and Masuda, T., Organ-specific autoimmune diseases induced in mice by elimination of T-cell subset. I. Evidence for the active participation of T cells in natural self-tolerance: deficit of a T-cell subset as a possible cause of autoimmune disease. J. Exp. Med. 1985. 161: 7287.
  • 21
    Sugihara, S., Izumi, Y., Yoshioka, T., Yagi, H., Tsujimura, T., Tarutani, O., Kohno, Y. et al., Autoimmune thyroiditis induced in mice depleted of particular T-cell subset. I. Requirement of Lyt-1dull L3T4bright normal T cells for the induction of thyroiditis. J. Immunol. 1988. 141: 105113.
  • 22
    Smith, H., Lou, Y. H., lacy, P. and Tung, K. S. K., Tolerance mechanism in experimental ovarian and gastric autoimmune disease. J. Immunol. 1992. 149: 22122218
  • 23
    Powrie, F. and Mason, D., OX-22high CD4+ T cells induce wasting disease with multiple organ pathology: prevention by OX-22low subset. J. Exp. Med. 1990. 172: 17011708.
  • 24
    McKeever, U., Mordes, J. P., Greiner, D. L., Appel, M. C., Rozing, J., Handler, E. S. and Rossini, A. A., Adoptive transfer of autoimmune diabetes and thyroiditis to athymic rats. Proc. Natl. Acad. Sci. USA 1990. 87: 76187622.
  • 25
    Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. and Toda, M., Immunologic tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25): breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 1995. 155: 11511164.
  • 26
    Asano, M., Toda, M., Sakaguchi, N. and Sakaguchi, S., Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J. Exp. Med. 1996. 184: 387396.
  • 27
    Powrie, F., Leach, M. W., Mauze, S., Caddle, L. B. and Coffman, R. L., Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int. Immunol. 1993. 5: 14611471.
  • 28
    Morrissey, P. J., Charrier, K., Braddy, S., Liggitt, D. and Watson, J. D., CD4+ T cells that express high levels of CD45RB induce wasting disease when transferred into congenic severe combined immunodeficient mice. Disease development is prevented by cotransfer of purified CD4+ T cells. J. Exp. Med. 1993. 178: 237244.
  • 29
    Itoh, M., Takahashi, T., Sakaguchi, N., Kuniyasu, Y., Shimizu, J., Otsuka, F. and Sakaguchi, S., Thymus and autoimmunity: Production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J. Immunol. 1999. 162: 53175326.
  • 30
    Suri-Payer, E., Amar, A. Z., McHugh, R., Natarajan, K., Margulies, D. H. and Shevach, E. M., Post-thymectomy autoimmune gastritis: fine specificity and pathogenicity of anti-H/K ATPase-reactive T cells. Eur. J. Immunol. 1999. 29: 669677.
  • 31
    Suri-Payer, E., Amar, A. Z., Thornton, A. M. and Shevach, E. M. CD4+CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J. Immunol. 1998. 160: 12121218.
  • 32
    Schorle, H., Holtschke, T., Hunig, T., Schimpl, A. and Horak, I., Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting. Nature 1991. 352: 621624.
  • 33
    Almeida, A. R., Legrand, N., Papiernik, M. and Freitas, A. A., Homeostasis of peripheral CD4+ T cells: IL-2R alpha and IL-2 shape a population of regulatory cells that controls CD4+ T cell numbers. J. Immunol. 2002. 169: 48504860.
  • 34
    Willerford, D. M., Chen, J., Ferry, J. A., Davidson, L., Ma, A. and Alt, F. W. Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity 1995. 3: 521530.
  • 35
    Suzuki, H., Zhou, Y. W., Kato, M. and Mak, T. W. and Nakashima, I., Normal regulatory alpha/beta T cells effectively eliminate abnormally activated T cells lacking the interleukin 2 receptor beta in vivo. J. Exp. Med. 1999. 190: 15611572.
  • 36
    Malek, T. R., Yu, A., Vincek, V., Scibelli, P. and Kong, L., CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rbeta-deficient mice. Implications for the nonredundant function of IL-2. Immunity 2002. 17: 167178.
  • 37
    Setoguchi, R., Hori, S., Takahashi, T. and Sakaguchi, S., Homeostatic maintenance of natural Foxp3+CD25+CD4+ regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J. Exp. Med. 2005. 201: 723735.
  • 38
    Takahashi, T., Kuniyasu, Y., Toda, M., Sakaguchi, N., Itoh, M., Iwata, M., Shimizu, J. and Sakaguchi, S., Immunologic self-tolerance maintained by CD25+ CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 1998. 10: 19691980.
  • 39
    Thornton, A. M. and Shevach, E. M., CD4+ CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 1998. 188: 287296.
  • 40
    Shevach, E. M. Certified professionals: CD4+CD25+ suppressor T cells. J. Exp. Med. 2001. 193: F41F46.
  • 41
    Brunkow, M. E., Jeffery, E. W., Hjerrild, K. A., Paeper, B., Clark, L. B., Yasayko, S. A., Wilkinson, J. E. et al., Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 2001. 27: 6873.
  • 42
    Chatila, T. A., Blaeser, F., Ho, N., Lederman, H. M., Voulgaropoulos, C., Helms, C. and Bowcock, A. M., JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J. Clin. Invest. 2000. 106: R75R81.
  • 43
    Wildin, R. S., Ramsdell, F., Peake, J., Faravelli, F., Casanova, J. L., Buist, N., Levy-Lahad, E. et al., X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet. 2001. 27: 1820.
  • 44
    Bennett, C. L., Christie, J., Ramsdell, F., Brunkow, M. E., Ferguson, P. J., Whitesell, L., Kelly, T. E. et al., The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 2001. 27: 2021.
  • 45
    Hori, S., Nomura, T. and Sakaguchi, S., Control of regulatory T cell development by the transcription factor Foxp3. Science 2003. 299: 10571061.
  • 46
    Fontenot, J. D., Gavin, M. A. and Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 2003. 4: 330336.
  • 47
    Khattri, R., Cox, T., Yasayko, S. A. and Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 2003. 4: 337342.
  • 48
    Fontenot, J. D., Rasmussen, J. P., Williams, L. M., Dooley, J. L., Farr, A. G. and Rudensky, A. Y. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 2005. 22: 329341.
  • 49
    Kim, J. M., Rasmussen, J. P. and Rudensky, A. Y., Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 2007. 8: 191197.
  • 50
    Lahl, K., Loddenkemper, C., Drouin, C., Freyer, J., Arnason, J., Eberl, G., Hamann, A. et al., Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J. Exp. Med. 2007. 204: 5763.
  • 51
    Roncador, G., Brown, P. J., Maestre, L., Hue, S., Martinez-Torrecuadrada, J. L., Ling, K. L., Pratap, S. et al., Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells at the single-cell level. Eur. J. Immunol. 2005. 35: 16811691.
  • 52
    Zheng, Y., Josefowicz, S. Z., Kas, A., Chu, T. T., Gavin, M. A. and Rudensky, A. Y., Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 2007. 445: 936940.
  • 53
    Marson, A., Kretschmer, K., Frampton, G. M., Jacobsen, E. S., Polansky, J. K., MacIsaac, K. D., Levine, S. S. et al., Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 2007. 445: 931935.
  • 54
    Wu, Y., Borde, M., Heissmeyer, V., Feuerer, M., Lapan, A. D., Stroud, J. C., Bates, D. L. et al., FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 2006. 126: 375387.
  • 55
    Ono, M., Yaguchi, H., Ohkura, N., Kitabayashi, I., Nagamura, Y., Nomura, T., Miyachi, Y. et al., Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 2007. 446: 685689.
  • 56
    Maloy, K. J. and Powrie, F., Regulatory T cells in the control of immune pathology. Nat. Immunol. 2001. 2: 816822.
  • 57
    von Boehmer H., Mechanisms of suppression by suppressor T cells. Nat. Immunol. 2005. 6: 338344.
  • 58
    Chen, W., Jin, W., Hardegen, N., Lei, K. J., Li, L., Marinos, N., McGrady, G. and Wahl, S. M., Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 2003. 198: 18751886.
  • 59
    Apostolou, I. and von Boehmer, H., In vivo instruction of suppressor commitment in naive T cells. J. Exp. Med. 2004. 199: 14011408.
  • 60
    Yagi, H., Nomura, T., Nakamura, K., Yamazaki, S., Kitawaki, T., Hori, S., Maeda, M.et al., Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. Int. Immunol. 2004. 16: 16431656.
  • 61
    Gavin, M. A., Torgerson, T. R., Houston, E., DeRoos, P., Ho, W. Y., Stray-Pedersen, A., Ocheltree, E. L. et al., Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc. Natl. Acad. Sci. USA 2006. 103: 66596664.
  • 62
    Yamazaki, S., Iyoda, T., Tarbell, K., Olson, K., Velinzon, K., Inaba, K. and Steinman, R. M., Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J. Exp. Med. 2003. 198: 235247.
  • 63
    Fehervari, Z. and Sakaguchi, S., Control of Foxp3+ CD25+CD4+ regulatory cell activation and function by dendritic cells. Int. Immunol. 2004. 16: 17691780.
  • 64
    Pasare, C. and Medzhitov, R., Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science. 2003. 299: 10331036.
  • 65
    Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. and Stockinger, B., TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006. 24: 179189.
  • 66
    Bettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T. B., Oukka, M., Weiner, H. L. and Kuchroo, V. K. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006. 441: 235238.
  • 67
    Laurence, A., Tato, C. M., Davidson, T. S, Kanno, Y., Chen, Z., Yao, Z., Blank, R. B. et al., Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 2007. 26: 371381.
  • 68
    Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007. 447: 661678.
  • 69
    Encinas, J. A., Wicker, L. S., Peterson, L. B., Mukasa, A., Teuscher, C., Sobel, R., Weiner, H. L. et al., QTL influencing autoimmune diabetes and encephalomyelitis map to a 0.15-cM region containing Il2. Nat. Genet. 1999. 21: 158160.
  • 70
    Sakaguchi, S., Ono, M., Setoguchi, R., Yagi, H., Hori, S., Fehervari, Z., Shimizu, J. et al., Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol. Rev. 2006. 212: 827.
  • 71
    Sakaguchi, S., Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 2004. 22: 531562.
  • 72
    Qin, S., Cobbold, S. P., Pope, H., Elliott, J., Kioussis, D., Davies, J. and Waldmann, H., “Infectious” transplantation tolerance. Science 1993. 259: 974977.
  • 73
    Hall, B. M., Pearce, N. W., Gurley, K. E. and Dorsch, S. E., Specific unresponsiveness in rats with prolonged cardiac allograft survival after treatment with cyclosporine. III. Further characterization of the CD4+ suppressor cell and its mechanisms of action. J. Exp. Med. 1990. 171: 141157.
  • 74
    Le Douarin, N., Corbel, C., Bandeira, A., Thomas-Vaslin, V., Modigliani, Y., Coutinho, A. and Salaun, J., Evidence for a thymus-dependent form of tolerance that is not based on elimination or anergy of reactive T cells. Immunol. Rev. 1996. 149: 3553.
  • 75
    Waldmann, H., Adams, E., Fairchild, P. and Cobbold, S., Infectious tolerance and the long-term acceptance of transplanted tissue. Immunol. Rev. 2006. 212: 301313.
  • 76
    Shevach, E. M., From vanilla to 28 flavors: multiple varieties of T regulatory cells. Immunity 2006. 25: 195201.