SEARCH

SEARCH BY CITATION

  • 1
    Fukuda, T., Boeckh, M., Carter, R. A., Sandmaier, B. M., Maris, M. B., Maloney, D. G., Martin, P. J. et al., Risks and outcomes of invasive fungal infections in recipients of allogeneic hematopoietic stem cell transplants after nonmyeloablative conditioning. Blood 2003 102: 827833.
  • 2
    Edwards, J. E. Jr., Invasive candida infections – Evolution of a fungal pathogen. N. Engl. J. Med. 1991 324: 10601062.
  • 3
    Anaissie, E., Opportunistic mycoses in the immunocompromised host: Experience at a cancer center and review. Clin. Infect. Dis. 1992 14 Suppl 1: S43–S53.
  • 4
    Mellman, I. and Steinman, R. M., Dendritic cells: specialized and regulated antigen processing machines. Cell 2001 106: 255258.
  • 5
    Stubbs, A. C., Martin, K. S., Coeshott, C., Skaates, S. V., Kuritzkes, D. R., Bellgrau, D., Franzusoff, A. et al., Whole recombinant yeast vaccine activates dendritic cells and elicits protective cell-mediated immunity. Nat. Med. 2001 7: 625629.
  • 6
    Iwasaki, A. and Medzhitov, R., Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 2004 5: 987995.
  • 7
    Brown, G. D. and Gordon, S., Immune recognition. A new receptor for beta-glucans. Nature 2001 413: 3637.
  • 8
    Underhill, D. M., Ozinsky, A., Hajjar, A. M., Stevens, A., Wilson, C. B., Bassetti, M. and Aderem, A., The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 1999 401: 811815.
  • 9
    Brown, G. D., Taylor, P. R., Reid, D. M., Willment, J. A., Williams, D. L., Martinez-Pomares, L., Wong, S. Y. and Gordon, S., Dectin-1 is a major beta-glucan receptor on macrophages. J. Exp. Med. 2002 196: 407412.
  • 10
    Netea, M. G., Van der Graaf, C. A., Vonk, A. G., Verschueren, I., Van der Meer, J. W. and Kullberg, B. J., The role of toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J. Infect. Dis. 2002 185: 14831489.
  • 11
    Netea, M. G., Gow, N. A., Munro, C. A., Bates, S., Collins, C., Ferwerda, G., Hobson, R. P. et al., Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J. Clin. Invest 2006 116: 16421650.
  • 12
    Ozinsky, A., Underhill, D. M., Fontenot, J. D., Hajjar, A. M., Smith, K. D., Wilson, C. B., Schroeder, L. and Aderem, A., The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc. Natl. Acad. Sci. USA 2000 97: 1376613771.
  • 13
    Mambula, S. S., Sau, K., Henneke, P., Golenbock, D. T. and Levitz, S. M., Toll-like receptor (TLR) signaling in response to Aspergillus fumigatus. J. Biol. Chem. 2002 277: 3932039326.
  • 14
    Yauch, L. E., Mansour, M. K., Shoham, S., Rottman, J. B. and Levitz, S. M., Involvement of CD14, toll-like receptors 2 and 4, and MyD88 in the host response to the fungal pathogen Cryptococcus neoformansin vivo. Infect. Immun. 2004 72: 53735382.
  • 15
    Bellocchio, S., Montagnoli, C., Bozza, S., Gaziano, R., Rossi, G., Mambula, S. S., Vecchi, A. et al., The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J. Immunol. 2004 172: 30593069.
  • 16
    Taylor, P. R., Brown, G. D., Reid, D. M., Willment, J. A., Martinez-Pomares, L., Gordon, S. and Wong, S. Y., The beta-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J. Immunol. 2002 169: 38763882.
  • 17
    Brown, G. D., Herre, J., Williams, D. L., Willment, J. A., Marshall, A. S. and Gordon, S., Dectin-1 mediates the biological effects of beta-glucans. J. Exp. Med. 2003 197: 11191124.
  • 18
    Gantner, B. N., Simmons, R. M., Canavera, S. J., Akira, S. and Underhill, D. M., Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J. Exp. Med. 2003 197: 11071117.
  • 19
    Gantner, B. N., Simmons, R. M. and Underhill, D. M., Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J. 2005 24: 12771286.
  • 20
    Steele, C., Marrero, L., Swain, S., Harmsen, A. G., Zheng, M., Brown, G. D., Gordon, S. et al., Alveolar macrophage-mediated killing of Pneumocystis carinii f. sp. muris involves molecular recognition by the Dectin-1 beta-glucan receptor. J. Exp. Med. 2003 198: 16771688.
  • 21
    Steele, C., Rapaka, R. R., Metz, A., Pop, S. M., Williams, D. L., Gordon, S., Kolls, J. K. and Brown, G. D., The beta-glucan receptor dectin-1 recognizes specific morphologies of Aspergillus fumigatus. PLoS. Pathog. 2005 1: e42.
  • 22
    Gersuk, G. M., Underhill, D. M., Zhu, L. and Marr, K. A., Dectin-1 and TLRs permit macrophages to distinguish between different Aspergillus fumigatus cellular states. J. Immunol. 2006 176: 37173724.
  • 23
    Saijo, S., Fujikado, N., Furuta, T., Chung, S. H., Kotaki, H., Seki, K., Sudo, K. et al., Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nat. Immunol. 2007 8: 3946.
  • 24
    Taylor, P. R., Tsoni, S. V., Willment, J. A., Dennehy, K. M., Rosas, M., Findon, H., Haynes, K. et al., Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat. Immunol. 2007 8: 3138.
  • 25
    Gross, O., Gewies, A., Finger, K., Schafer, M., Sparwasser, T., Peschel, C., Forster, I. and Ruland, J., Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 2006 442: 651656.
  • 26
    Rogers, N. C., Slack, E. C., Edwards, A. D., Nolte, M. A., Schulz, O., Schweighoffer, E., Williams, D. L. et al., Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 2005 22: 507517.
  • 27
    Ross, G. D., Cain, J. A., Myones, B. L., Newman, S. L. and Lachmann, P. J., Specificity of membrane complement receptor type three (CR3) for beta-glucans. Complement 1987 4: 6174.
  • 28
    Ross, G. D., Cain, J. A. and Lachmann, P. J., Membrane complement receptor type three (CR3) has lectin-like properties analogous to bovine conglutinin as functions as a receptor for zymosan and rabbit erythrocytes as well as a receptor for iC3b. J. Immunol. 1985 134: 33073315.
  • 29
    Taylor, P. R., Brown, G. D., Herre, J., Williams, D. L., Willment, J. A. and Gordon, S., The role of SIGNR1 and the beta-glucan receptor (dectin-1) in the nonopsonic recognition of yeast by specific macrophages. J. Immunol. 2004 172: 11571162.
  • 30
    Sung, S. S., Nelson, R. S. and Silverstein, S. C., Yeast mannans inhibit binding and phagocytosis of zymosan by mouse peritoneal macrophages. J. Cell Biol. 1983 96: 160166.
  • 31
    Giaimis, J., Lombard, Y., Fonteneau, P., Muller, C. D., Levy, R., Makaya-Kumba, M., Lazdins, J. and Poindron, P., Both mannose and beta-glucan receptors are involved in phagocytosis of unopsonized, heat-killed Saccharomyces cerevisiae by murine macrophages. J. Leukoc. Biol. 1993 54: 564571.
  • 32
    Heath, W. R., Belz, G. T., Behrens, G. M., Smith, C. M., Forehan, S. P., Parish, I. A., Davey, G. M. et al., Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol. Rev. 2004 199: 926.
  • 33
    Schnorrer, P., Behrens, G. M., Wilson, N. S., Pooley, J. L., Smith, C. M., El-Sukkari, D., Davey, G. et al., The dominant role of CD8+ dendritic cells in cross-presentation is not dictated by antigen capture. Proc. Natl. Acad. Sci. USA 2006 103: 1072910734.
  • 34
    Dudziak, D., Kamphorst, A. O., Heidkamp, G. F., Buchholz, V. R., Trumpfheller, C., Yamazaki, S., Cheong, C. et al., Differential antigen processing by dendritic cell subsets in vivo. Science 2007 315: 107111.
  • 35
    den Haan, J. M., Lehar, S. M. and Bevan, M. J., CD8(+) but not CD8(-) dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med. 2000 192: 16851696.
  • 36
    den Haan, J. M. and Bevan, M. J., Constitutive versus activation-dependent cross-presentation of immune complexes by CD8(+) and CD8(-) dendritic cells in vivo. J. Exp. Med. 2002 196: 817827.
  • 37
    Verstrepen, K. J., Reynolds, T. B. and Fink, G. R., Origins of variation in the fungal cell surface. Nat. Rev. Microbiol. 2004 2: 533540.
  • 38
    Reid, D. M., Montoya, M., Taylor, P. R., Borrow, P., Gordon, S., Brown, G. D. and Wong, S. Y., Expression of the beta-glucan receptor, Dectin-1, on murine leukocytes in situ correlates with its function in pathogen recognition and reveals potential roles in leukocyte interactions. J. Leukoc. Biol. 2004 76: 8694.
  • 39
    Carter, R. W., Thompson, C., Reid, D. M., Wong, S. Y. and Tough, D. F., Preferential induction of CD4+ T cell responses through in vivo targeting of antigen to dendritic cell-associated C-type lectin-1. J. Immunol. 2006 177: 22762284.
  • 40
    Hansen, M. C., Palmer, R. J. Jr., Udsen, C., White, D. C. and Molin, S., Assessment of GFP fluorescence in cells of Streptococcus gordonii under conditions of low pH and low oxygen concentration. Microbiology 2001 147: 13831391.
  • 41
    Edwards, A. D., Manickasingham, S. P., Sporri, R., Diebold, S. S., Schulz, O., Sher, A., Kaisho, T. et al., Microbial recognition via Toll-like receptor-dependent and-independent pathways determines the cytokine response of murine dendritic cell subsets to CD40 triggering. J. Immunol. 2002 169: 36523660.
  • 42
    Leibundgut-Landmann, S., Gross, O., Robinson, M. J., Osorio, F., Slack, E. C., Tsoni, S. V., Schweighoffer, E. et al., Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat. Immunol. 2007 8: 630638.
  • 43
    Slack, E. C., Robinson, M. J., Hernanz-Falcon, P., Brown, G. D., Williams, D. L., Schweighoffer, E., Tybulewicz, V. L. and Reis e Sousa, C., Syk-dependent ERK activation regulates IL-2 and IL-10 production by DC stimulated with zymosan. Eur. J. Immunol. 2007 37: 16001612.
  • 44
    Acosta-Rodriguez, E. V., Rivino, L., Geginat, J., Jarrossay, D., Gattorno, M., Lanzavecchia, A., Sallusto, F. and Napolitani, G., Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol. 2007 8: 639646.
  • 45
    McKenzie, E. J., Taylor, P. R., Stillion, R. J., Lucas, A. D., Harris, J., Gordon, S. and Martinez-Pomares, L., Mannose receptor expression and function define a new population of murine dendritic cells. J. Immunol. 2007 178: 49754983.
  • 46
    Iyoda, T., Shimoyama, S., Liu, K., Omatsu, Y., Akiyama, Y., Maeda, Y., Takahara, K. et al., The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo. J. Exp. Med. 2002 195: 12891302.
  • 47
    Schulz, O. and Reis e Sousa, C., Cross-presentation of cell-associated antigens by CD8alpha+ dendritic cells is attributable to their ability to internalize dead cells. Immunology 2002 107: 183189.
  • 48
    Smith, C. M., Belz, G. T., Wilson, N. S., Villadangos, J. A., Shortman, K., Carbone, F. R. and Heath, W. R., Cutting edge: Conventional CD8 alpha+ dendritic cells are preferentially involved in CTL priming after footpad infection with herpes simplex virus-1. J. Immunol. 2003 170: 44374440.
  • 49
    Belz, G. T., Smith, C. M., Eichner, D., Shortman, K., Karupiah, G., Carbone, F. R. and Heath, W. R., Cutting edge: Conventional CD8 alpha+ dendritic cells are generally involved in priming CTL immunity to viruses. J. Immunol. 2004 172: 19962000.
  • 50
    Belz, G. T., Shortman, K., Bevan, M. J. and Heath, W. R., CD8alpha+ dendritic cells selectively present MHC class I-restricted noncytolytic viral and intracellular bacterial antigens in vivo. J. Immunol. 2005 175: 196200.
  • 51
    Yrlid, U. and Wick, M. J., Antigen presentation capacity and cytokine production by murine splenic dendritic cell subsets upon Salmonella encounter. J. Immunol. 2002 169: 108116.
  • 52
    Bueno, S. M., Tobar, J. A., Iruretagoyena, M. I. and Kalergis, A. M., Molecular interactions between dendritic cells and Salmonella: Escape from adaptive immunity and implications on pathogenesis. Crit. Rev. Immunol. 2005 25: 389403.
  • 53
    Lin, J. S., Yang, C. W., Wang, D. W. and Wu-Hsieh, B. A., Dendritic cells cross-present exogenous fungal antigens to stimulate a protective CD8 T cell response in infection by Histoplasma capsulatum. J. Immunol. 2005 174: 62826291.
  • 54
    Heintel, T., Breinig, F., Schmitt, M. J. and Meyerhans, A., Extensive MHC class I-restricted CD8 T lymphocyte responses against various yeast genera in humans. FEMS Immunol. Med. Microbiol. 2003 39: 279286.
  • 55
    Romani, L., Immunity to fungal infections. Nat. Rev. Immunol. 2004 4: 123.
  • 56
    Marquis, M., Lewandowski, D., Dugas, V., Aumont, F., Senechal, S., Jolicoeur, P., Hanna, Z. and de Repentigny, L., CD8+ T cells but not polymorphonuclear leukocytes are required to limit chronic oral carriage of Candida albicans in transgenic mice expressing human immunodeficiency virus type 1. Infect. Immun. 2006 74: 23822391.
  • 57
    Wuthrich, M., Filutowicz, H. I., Warner, T., Deepe, G. S. Jr. and Klein, B. S., Vaccine immunity to pathogenic fungi overcomes the requirement for CD4 help in exogenous antigen presentation to CD8+ T cells: implications for vaccine development in immune-deficient hosts. J. Exp. Med. 2003 197: 14051416.
  • 58
    Beno, D. W., Stover, A. G. and Mathews, H. L., Growth inhibition of Candida albicans hyphae by CD8+ lymphocytes. J. Immunol. 1995 154: 52735281.
  • 59
    Ma, L. L., Spurrell, J. C., Wang, J. F., Neely, G. G., Epelman, S., Krensky, A. M. and Mody, C. H., CD8 T cell-mediated killing of Cryptococcus neoformans requires granulysin and is dependent on CD4 T cells and IL-15. J. Immunol. 2002 169: 57875795.
  • 60
    Tansho, S., Abe, S. and Yamaguchi, H., Inhibition of Candida albicans growth by murine peritoneal neutrophils and augmentation of the inhibitory activity by bacterial lipopolysaccharide and cytokines. Microbiol. Immunol. 1994 38: 379383.
  • 61
    Stevens, D. A., Brummer, E. and Clemons, K. V., Interferon-gamma as an antifungal. J. Infect. Dis. 2006 194 Suppl 1: S33–S37.
  • 62
    Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. and Stockinger, B., TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006 24: 179189.
  • 63
    Acosta-Rodriguez, E. V., Napolitani, G., Lanzavecchia, A. and Sallusto, F., Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat. Immunol. 2007 8: 942949.
  • 64
    Moore, M. W., Carbone, F. R. and Bevan, M. J., Introduction of soluble protein into the class I pathway of antigen processing and presentation. Cell 1988 54: 777785.
  • 65
    van Leeuwen, F., Gafken, P. R. and Gottschling, D. E., Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 2002 109: 745756.
  • 66
    Gardner, R. G., Nelson, Z. W. and Gottschling, D. E., Ubp10/Dot4p regulates the persistence of ubiquitinated histone H2B: Distinct roles in telomeric silencing and general chromatin. Mol. Cell. Biol. 2005 25: 61236139.
  • 67
    Huh, W. K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S. and O'Shea, E. K., Global analysis of protein localization in budding yeast. Nature 2003 425: 686691.