• 1
    Yewdell, J. W. and Bennink, J. R., Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu. Rev. Immunol. 1999 17: 5188.
  • 2
    Garbi, N., Tanaka, S., van den Broek, M., Momburg, F. and Hammerling, G. J., Accessory molecules in the assembly of major histocompatibility complex class I/peptide complexes: How essential are they for CD8+ T-cell immune responses? Immunol. Rev. 2005 207: 7788.
  • 3
    Elliott, T. and Williams, A., The optimization of peptide cargo bound to MHC class I molecules by the peptide-loading complex. Immunol. Rev. 2005 207: 8999.
  • 4
    Park, B., Lee, S., Kim, E., Cho, K., Riddell, S. R., Cho, S. and Ahn, K., Redox regulation facilitates optimal peptide selection by MHC class I during antigen processing. Cell 2006 127: 249251.
  • 5
    Van Kaer, L., Ashton Rickardt, P. G., Ploegh, H. L. and Tonegawa, S., TAP1 mutant mice are deficient in antigen presentation, surface class I molecules, and CD48+ T cells. Cell 1992 71: 12051214.
  • 6
    Garbi, N., Tan, P., Diehl, A. D., Chambers, B. J., Ljunggren, H. G., Momburg, F. and Hammerling, G. J., Impaired immune responses and altered peptide repertoire in tapasin-deficient mice. Nat. Immunol. 2000 1: 234238.
  • 7
    Grandea 3rd, A. G., Golovina, T. N., Hamilton, S. E., Sriram, V., Spies, T., Brutkiewicz, R. R., Harty, J. T. et al., Impaired assembly yet normal trafficking of MHC class I molecules in tapasin mutant mice. Immunity 2000 13: 213222.
  • 8
    Gao, B., Adhikari, R., Howarth, M., Nakamura, K., Gold, M. C., Hill, A. B., Knee, R. et al., Assembly and antigen-presenting function of MHC class I molecules in cells lacking the ER chaperone calreticulin. Immunity 2002 16: 99109.
  • 9
    Garbi, N., Tanaka, S., Momburg, F. and Hammerling, G. J., Impaired assembly of the MHC class I peptide loading complex in mice deficient in the oxidoreductase ERp57. Nat. Immunol. 2006 7: 93102.
  • 10
    Howarth, M., Williams, A., Tolstrup, A. B. and Elliott, T., Tapasin enhances MHC class I peptide presentation according to peptide half-life. Proc. Natl. Acad. Sci. 2004 101: 1173711742.
  • 11
    Sant, A. J., Chaves, F. A., Jenks, S. A., Richards, K. A., Menges, P., Weaver, J. M. and Lazarski, C. A., The relationship between immunodominance, DM editing, and the kinetic stability of MHC class II:peptide complexes. Immunol. Rev. 2005 207: 261278.
  • 12
    Lazarski, C. A., Chaves, F. A., Jenks, S. A., Wu, S., Richards, K. A., Weaver, J. M. and Sant, A. J., The kinetic stability of MHC class II:peptide complexes is a key parameter that dictates immunodominance. Immunity 2005 23: 2940.
  • 13
    Nanda, N. K. and Bikoff, E. K., DM peptide-editing function leads to immunodominance in CD4 T cell responses in vivo. J. Immunol. 2005 175: 64736480.
  • 14
    Lavarski, C. A., Chaves, F. A. and Sant, A. J., The impact of DM on MHC class II-restricted antigen presentation can be altered by manipulation of MHC-peptide kinetic stability. J. Exp. Med. 2006 203: 13191328.
  • 15
    Radcliffe, J. N., Roddick, J. S., Friedmann, P. S., Stevenson, F. K. and Thirdborough, S. M., Prime-boost with alternating DNA vaccines designed to engage different antigen-presentation pathways generates high frequencies of peptide-specific CD8+ T cells. J. Immunol. 2006 170: 66266633.
  • 16
    Rice, J., King, C. A., Spellerberg, M. B., Fairweather, N. and Stevenson, F. K., Manipulation of pathogen-derived genes to influence antigen presentation via DNA vaccines. Vaccine 1999 17: 30303038.
  • 17
    Norbury, C. C., Basta, S., Donohue, K. B., Tscharke, D. C., Princiotta, M. F., Berglund, P., Gibbs, J. et al., CD8+ T cell cross-priming via transfer of proteasome substrates. Science 2004 304: 13181321.
  • 18
    Lipford, G. B., Bauer, S., Wagner, H. and Heeg, K., In vivo CTL induction with point-substituted ovalbumin peptides: Immunogenicity correlates with peptide-induced MHC class I stability. Vaccine 1995 13: 313320.
  • 19
    van der Burg, S. H., Visseren, M. J. W., Brandt, M. P., Kast, W. M. and Melief, C. J. M., Immunogenicity of peptides bound to MHC class I molecules depends on the MHC-peptide complex stability. J. Immunol. 1996 156: 33083314.
  • 20
    Porgador, A., Yewdell, J. W., Deng, Y., Bennink, J. R. and Germain, R. N., Localization, quantitation, and in situ detection of specific peptide-MHC class I complexes using a monoclonal antibody. Immunity 1997 6: 715726.
  • 21
    Radcliffe, J. N., Roddick, J. S., Stevenson, F. K. and Thirdborough, S. M., Prolonged antigen expression following DNA vaccination impairs effector CD8+ T-cell function and memory development. J. Immunol. 2007 179: 83138321.
  • 22
    Wherry, E. J., Puorro, K. A., Porgador, A. and Eisenlohr, L. C., The induction of virus-specific CTL as a function of increasing epitope expression: Responses rise steadily until excessively high levels of epitope are attained. J. Immunol. 1999 163: 37353745.
  • 23
    Wang, Y., O'Malley, B. W., Tsai, S. Y. and O'Malley, B. W., A regulatory system for use in gene transfer. Proc. Natl. Acad. Sci. 1994 91: 81808184.
  • 24
    Yewdell, J. W., The seven dirty little secrets of major histocompatibility complex class I antigen processing. Immunol. Rev. 2005 207: 818.
  • 25
    Busch, D. H. and Pamer, E. G., MHC class I/peptide stability: Implications for immunodominance, in vitro proliferation, and diversity of responding CTL. J. Immunol. 1998 160: 44414448.