• 1
    WHO, The World Health Report. World Health Organization, Geneva, Switzerland 2005.
  • 2
    Adkins, B., Leclerc, C. and Marshall-Clarke, S., Neonatal adaptive immunity comes of age. Nat. Rev.. Immunol. 2004. 4: 553564.
  • 3
    Levy, O., Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat. Rev. Immunol. 2007. 7: 379390.
  • 4
    Crowe, Jr. J. E., Influence of maternal antibodies on neonatal immunization against respiratory viruses. Clin. Infect. Dis. 2001. 33: 17201727.
  • 5
    Siegrist, C. A., The challenges of vaccine responses in early life: selected examples. J. Comp. Pathol. 2007. 137: S4S9.
  • 6
    Michaelsson, J., Mold, J. E., McCune, J. M. and Nixon, D. F., Regulation of T cell responses in the developing human fetus. J. Immunol. 2006. 176: 57415748.
  • 7
    Fernandez, M. A., Puttur, F. K., Wang, Y. M., Howden, W., Alexander, S. I. and Jones, C. A., T regulatory cells contribute to the attenuated primary CD8+ and CD4+ T cell responses to Herpes Simplex virus type 2 in neonatal mice. J. Immunol. 2008. 180: 15561564.
  • 8
    Hunt, D. W., Huppertz, H. I., Jiang, H. J. and Petty, R. E., Studies of human cord blood dendritic cells: evidence for functional immaturity. Blood 1994. 84: 43334343.
  • 9
    Langrish, C. L., Buddle, J. C., Thrasher, A. J. and Goldblatt, D., Neonatal dendritic cells are intrinsically biased against Th-1 immune responses. Clin. Exp. Immunol. 2002. 128: 118123.
  • 10
    Weitkamp, J. H., Lafleur, B. J. and Crowe, Jr. J. E., Rotavirus-specific CD5+ B cells in young children exhibit a distinct antibody repertoire compared with CD5− B cells. Hum. Immunol. 2006. 67: 3342.
  • 11
    Zemlin, M., Hoersch, G., Zemlin, C., Pohl-Schickinger, A., Hummel, M., Berek, C., Maier, R. F. and Bauer, K., The postnatal maturation of the immunoglobulin heavy chain IgG repertoire in human preterm neonates is slower than in term neonates. J. Immunol. 2007. 178: 11801188.
  • 12
    Willems, F., Vollstedt, S. and Suter, M., Phenotype and function of neonatal dendritic cells. Eur. J. Immunol. 2009. 39. DOI 10.1002/eji.200838391.
  • 13
    Offit, P. and Hackett, C., Multiple vaccines and the immune system, in: Plotkin, S. A. and Orenstein, W. A. (Eds.), Vaccines, 4th Edn., Saunders, Philadelphia 2004, pp. 15831589.
  • 14
    Goriely, S. and Goldman, M., From tolerance to autoimmunity: is there a risk in early life vaccination? J. Comp. Pathol. 2007. 137: S57S61.
  • 15
    Gruber, C., Nilsson, L. and Bjorksten, B., Do early childhood immunizations influence the development of atopy and do they cause allergic reactions? Pediatr. Allergy Immunol. 2001. 12: 296311.
  • 16
    Wakefield, A. J., MMR vaccination and autism. Lancet 1999. 354: 949950.
  • 17
    Demicheli, V., Jefferson, T., Rivetti, A. and Price, D., Vaccines for measles, mumps and rubella in children. Cochrane Database Syst. Rev. 2005. 4: CD004407.
  • 18
    Thompson, W. W., Price, C., Goodson, B., Shay, D. K., Benson, P., Hinrichsen, V. L., Lewis, E. et al., Early thimerosal exposure and neuropsychological outcomes at 7 to 10 years. N. Engl. J. Med. 2007. 357: 12811292.
  • 19
    Dennehy, P. H., Rotavirus vaccines: an overview. Clin. Microbiol. Rev. 2008. 21: 198208.
  • 20
    Morein, B., Blomqvist, G. and Hu, K., Immune responsiveness in the neonatal period. J. Comp. Pathol. 2007. 137: S27S31.
  • 21
    Siegrist, C. A., Mechanisms by which maternal antibodies influence infant vaccine responses: review of hypotheses and definition of main determinants. Vaccine 2003. 21: 34063412.
  • 22
    Panpitpat, C., Thisyakorn, U., Chotpitayasunondh, T., Furer, E., Que, J. U., Hasler, T. and Cryz, Jr. S. J., Elevated levels of maternal anti-tetanus toxin antibodies do not suppress the immune response to a Haemophilus influenzae type b polyribosylphosphate-tetanus toxoid conjugate vaccine. Bull. World Health Organ. 2000. 78: 364371.
  • 23
    Plotkin, S. A., Vaccines: correlates of vaccine-induced immunity. Clin. Infect. Dis. 2008. 47: 401409.
  • 24
    Provenzano, R. W., Wetterlow, L. H. and Sullivan, C. L., Immunization and antibody response in the newborn infant. I. Pertussis inoculation within twenty-four hours of birth. N. Engl. J. Med. 1965. 273: 959965.
  • 25
    Lieberman, J. M., Greenberg, D. P., Wong, V. K., Partridge, S., Chang, S. J., Chiu, C. Y. and Ward, J. I., Effect of neonatal immunization with diphtheria and tetanus toxoids on antibody responses to Haemophilus influenzae type b conjugate vaccines. J. Pediatr. 1995. 126: 198205.
  • 26
    Vekemans, J., Ota, M. O., Wang, E. C., Kidd, M., Borysiewicz, L. K., Whittle, H., McAdam, K. P. et al., T cell responses to vaccines in infants: defective IFNgamma production after oral polio vaccination. Clin. Exp. Immunol. 2002. 127: 495498.
  • 27
    Sutter, R., Kew, O. and Cochi, S., Poliovirus vaccine-live, in: Plotkin, S. and Orenstein, H. (Eds.), Vaccines, 4th Edn., Saunders, Philadelphia 2004, pp. 651705.
  • 28
    Douglas, R. M., Paton, J. C., Duncan, S. J. and Hansman, D. J., Antibody response to pneumococcal vaccination in children younger than five years of age. J. Infect. Dis. 1983. 148: 131137.
  • 29
    Siba, P., Deborah, L., Holt, P. G., Richmond, P., van den Biggelaar, A., Phuanukoonnon, S. W. P. and Reeder, J. Neonatal immunization with pneumococcal conjugate vaccine in Papua New Guinea, Clinical Trials, U.S. National Institutes of Health 2008.
  • 30
    Andersen, P. and Doherty T. M., The success and failure of BCG – implications for a novel tuberculosis vaccine. Nat. Rev. Microbiol. 2005. 3: 656662.
  • 31
    Sedaghatian, M. R. and Shana'a, I. A., Evaluation of BCG at birth in the United Arab Emirates. Tubercle 1990. 71: 177180.
  • 32
  • 33
    Remus, N., Reichenbach, J., Picard, C., Rietschel, C., Wood, P., Lammas, D., Kumararatne, D. S. and Casanova, J. L., Impaired interferon gamma-mediated immunity and susceptibility to mycobacterial infection in childhood. Pediatr. Res. 2001. 50: 813.
  • 34
    Jouanguy, E., Altare, F., Lamhamedi, S., Revy, P., Emile, J. F., Newport, M., Levin, M. et al., Interferon-gamma-receptor deficiency in an infant with fatal bacille Calmette–Guerin infection. N. Engl. J. Med. 1996. 335: 19561961.
  • 35
    Board, I. M., BCG vaccine SSI-update, MIMS Ireland 2008.
  • 36
    Bolger, T., O'Connell, M., Menon, A. and Butler, K., Complications associated with the bacille Calmette–Guerin vaccination in Ireland. Arch. Dis. Child. 2006. 91: 594597.
  • 37
    Salo, E. P., BCG in Finland: changing from a universal to a selected programme. Euro Surveill. 2006. 11: 1820.
  • 38
    Fine, P. E., Variation in protection by BCG: implications of and for heterologous immunity. Lancet 1995. 346: 13391345.
  • 39
    Rodrigues, L. C., Diwan, V. K. and Wheeler, J. G., Protective effect of BCG against tuberculous meningitis and miliary tuberculosis: a meta-analysis. Int. J. Epidemiol. 1993. 22: 11541158.
  • 40
    Colditz, G. A., Berkey, C. S., Mosteller, F., Brewer, T. F., Wilson, M. E., Burdick, E. and Fineberg, H. V., The efficacy of bacillus Calmette–Guerin vaccination of newborns and infants in the prevention of tuberculosis: meta-analyses of the published literature. Pediatrics 1995. 96: 2935.
  • 41
    Trunz, B. B., Fine, P. and Dye, C., Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet 2006. 367: 11731180.
  • 42
    Marchant, A., Goetghebuer, T., Ota, M. O., Wolfe, I., Ceesay, S. J., De Groote, D., Corrah, T. et al., Newborns develop a Th1-type immune response to Mycobacterium bovis bacillus Calmette–Guerin vaccination. J. Immunol. 1999. 163: 22492255.
  • 43
    Ota, M. O., Vekemans, J., Schlegel-Haueter, S. E., Fielding, K., Sanneh, M., Kidd, M., Newport, M. J. et al., Influence of Mycobacterium bovis bacillus Calmette–Guerin on antibody and cytokine responses to human neonatal vaccination. J. Immunol. 2002. 168: 919925.
  • 44
    Xing, Z. and Charters, T. J., Heterologous boost vaccines for bacillus Calmette–Guerin prime immunization against tuberculosis. Expert Rev. Vaccines 2007. 6: 539546.
  • 45
    Horwitz, M. A., Harth, G., Dillon, B. J. and Maslesa-Galic, S., A novel live recombinant mycobacterial vaccine against bovine tuberculosis more potent than BCG. Vaccine 2006. 24: 15931600.
  • 46
    Andersen, P., Tuberculosis vaccines – an update. Nat. Rev. Microbiol. 2007. 5: 484487.
  • 47
    Lavanchy, D., Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. J. Viral Hepat. 2004. 11: 97107.
  • 48
    Mast, E., Mahoney, F., Kane, M. and Margolis, H., Hepatitis B vaccine, in: Plotkin, J. and Orenstein, H. (Eds.), Vaccines, 4th Edn., Saunders, Philadelphia 2004.
  • 49
    Practices, A. C. o. I., Hepatitis B virus: a comprehensive strategy for eliminating transmission in the United States through universal childhood vaccination. Recommendations of the Immunization Practices Advisory Committee (ACIP). MMWR Recomm. Rep. 1991. 40: 125.
  • 50
    Mast, E. E., Margolis, H. S., Fiore, A. E., Brink, E. W., Goldstein, S. T., Wang, S. A., Moyer, L. A. et al., A comprehensive immunization strategy to eliminate transmission of hepatitis B virus infection in the United States: recommendations of the Advisory Committee on Immunization Practices (ACIP) part 1: immunization of infants, children, and adolescents. MMWR Recomm. Rep. 2005. 54: 131.
  • 51
    Wong, V. C., Ip, H. M., Reesink, H. W., Lelie, P. N., Reerink-Brongers, E. E., Yeung, C. Y. and Ma, H. K., Prevention of the HBsAg carrier state in newborn infants of mothers who are chronic carriers of HBsAg and HBeAg by administration of hepatitis-B vaccine and hepatitis-B immunoglobulin. Double-blind randomised placebo-controlled study. Lancet 1984. 1: 921926.
  • 52
    Xu, Z. Y., Liu, C. B., Francis, D. P., Purcell, R. H., Gun, Z. L., Duan, S. C., Chen, R. J. et al., Prevention of perinatal acquisition of hepatitis B virus carriage using vaccine: preliminary report of a randomized, double-blind placebo-controlled and comparative trial. Pediatrics 1985. 76: 713718.
  • 53
    Chang, M. H., Chen, C. J., Lai, M. S., Hsu, H. M., Wu, T. C., Kong, M. S., Liang, D. C. et al., Universal hepatitis B vaccination in Taiwan and the incidence of hepatocellular carcinoma in children. Taiwan Childhood Hepatoma Study Group. N. Engl. J. Med. 1997. 336: 18551859.
  • 54
    Halsey, N. and Galazka, A., The efficacy of DPT and oral poliomyelitis immunization schedules initiated from birth to 12 weeks of age. Bull. World Health Organ. 1985. 63: 11511169.
  • 55
    Knuf, M., Schmitt, H. J., Wolter, J., Schuerman, L., Jacquet, J. M., Kieninger, D., Siegrist, C. A. and Zepp, F., Neonatal vaccination with an acellular pertussis vaccine accelerates the acquisition of pertussis antibodies in infants. J. Pediatr. 2008. 152: 655660.
  • 56
    Olin, P., Gustafsson, L., Barreto, L., Hessel, L., Mast, T. C., Rie, A. V., Bogaerts, H. and Storsaeter, J., Declining pertussis incidence in Sweden following the introduction of acellular pertussis vaccine. Vaccine 2003. 21: 20152021.
  • 57
    Coalition, I. A., Recommended immunization schedule for children and adolescents ages 0–18 years – United States, 2008. MMWR 2008. 57: Q1Q4.
  • 58
    WHO, Weekly epidemiological record. Wkly. Epidemiol. Rec. 2007. 32: 285296.
  • 59
    Clark, H., Offit, P., Glass, R. and Ward, R. L., Rotavirus vaccines, in: Plotkin, S. and Orenstein, W. (Eds.), Vaccines, 4th Edn., Saunders, Philadelphia 2004.
  • 60
    Aponte, J. J., Aide, P., Renom, M., Mandomando, I., Bassat, Q., Sacarlal, J., Manaca, M. N. et al., Safety of the RTS,S/AS02D candidate malaria vaccine in infants living in a highly endemic area of Mozambique: a double blind randomised controlled phase I/IIb trial. Lancet 2007. 370: 15431551.
  • 61
    Garcon, N., Chomez, P. and Van Mechelen, M., GlaxoSmithKline adjuvant systems in vaccines: concepts, achievements and perspectives. Expert Rev. Vaccines 2007. 6: 723739.
  • 62
    Lambert, J. S., HIV vaccines in infants and children. Paediatr. Drugs 2005. 7: 267276.
  • 63
    Chappuis, G., Neonatal immunity and immunisation in early age: lessons from veterinary medicine. Vaccine 1998. 16: 14681472.
  • 64
    Butler, J. E., Sinkora, M., Wertz, N., Holtmeier, W. and Lemke, C. D., Development of the neonatal B and T cell repertoire in swine: implications for comparative and veterinary immunology. Vet. Res. 2006. 37: 417441.
  • 65
    Mage, R. G., Lanning, D. and Knight, K. L., B cell and antibody repertoire development in rabbits: the requirement of gut-associated lymphoid tissues. Dev. Comp. Immunol. 2006. 30: 137153.
  • 66
    Beutler, B. and Rehli, M., Evolution of the TIR, tolls and TLRs: functional inferences from computational biology. Curr. Top. Microbiol. Immunol. 2002. 270: 121.
  • 67
    Levy, O., Coughlin, M., Cronstein, B., Roy, R. M., Desai, A. and Wessels, M. R., The adenosine system selectively inhibits TLR-mediated TNF-alpha production in the human newborn. J. Immunol. 2006. 177: 19561966.
  • 68
    Day, M. J., Vaccine safety in the neonatal period. J. Comp. Pathol. 2007. 137: S51S56.
  • 69
    Day, M. J., Schoon, H. A., Magnol, J. P., Saik, J., Devauchelle, P., Truyen, U., Gruffydd-Jones, T. J. et al., A kinetic study of histopathological changes in the subcutis of cats injected with non-adjuvanted and adjuvanted multi-component vaccines. Vaccine 2007. 25: 40734084.
  • 70
    Tan, J., Cooke, J., Clarke, N. and Tannock, G. A., Molecular evaluation of responses to vaccination and challenge by Marek's disease viruses. Avian Pathol. 2007. 36: 351359.
  • 71
    Chen, J., Zhang, F., Fang, F., Chang, H. and Chen, Z., Vaccination with hemagglutinin or neuraminidase DNA protects BALB/c mice against influenza virus infection in presence of maternal antibody. BMC Infect. Dis. 2007. 7: 118129.
  • 72
    Pertmer, T. M., Oran, A. E., Moser, J. M., Madorin, C. A. and Robinson, H. L., DNA vaccines for influenza virus: differential effects of maternal antibody on immune responses to hemagglutinin and nucleoprotein. J. Virol. 2000. 74: 77877793.
  • 73
    Franchini, M., Abril, C., Schwerdel, C., Ruedl, C., Ackermann, M. and Suter, M., Protective T-cell-based immunity induced in neonatal mice by a single replicative cycle of herpes simplex virus. J. Virol. 2001. 75: 8389.
  • 74
    Kollmann, T. R., Reikie, B., Blimkie, D., Way, S. S., Hajjar, A. M., Arispe, K., Shaulov, A. and Wilson, C. B., Induction of protective immunity to Listeria monocytogenes in neonates. J. Immunol. 2007. 178: 36953701.
  • 75
    Starks, H., Bruhn, K. W., Shen, H., Barry, R. A., Dubensky, T. W., Brockstedt, D., Hinrichs, D. J. et al., Listeria monocytogenes as a vaccine vector: virulence attenuation or existing antivector immunity does not diminish therapeutic efficacy. J. Immunol. 2004. 173: 420427.
  • 76
    Pelizon, A. C., Martins, D. R., Zorzella, S. F., Trombone, A. P., Lorenzi, J. C., Carvalho, R. F., Brandao, I. T. et al., Genetic vaccine for tuberculosis (pVAXhsp65) primes neonate mice for a strong immune response at the adult stage. Genet. Vaccines Ther. 2007. 5: 1221.
  • 77
    Sedegah, M. and Hoffman, S. L., Immunological responses of neonates and infants to DNA vaccines. Methods Mol. Med. 2006. 127: 239251.
  • 78
    Premenko-Lanier, M., Rota, P. A., Rhodes, G. H., Bellini, W. J. and McChesney, M. B., Protection against challenge with measles virus (MV) in infant macaques by an MV DNA vaccine administered in the presence of neutralizing antibody. J. Infect. Dis. 2004. 189: 20642071.
  • 79
    Capozzo, A. V., Cuberos, L., Levine, M. M. and Pasetti, M. F., Mucosally delivered Salmonella live vector vaccines elicit potent immune responses against a foreign antigen in neonatal mice born to naive and immune mothers. Infect. Immun. 2004. 72: 46374646.
  • 80
    Mielcarek, N., Debrie, A. S., Raze, D., Bertout, J., Rouanet, C., Younes, A. B., Creusy, C. et al., Live attenuated B. pertussis as a single-dose nasal vaccine against whooping cough. PLoS Pathog. 2006. 2: 662670.
  • 81
    de Jong, M. F., Prevention of atrophic rhinitis in piglets by means of intranasal administration of a live non-AR-pathogenic Bordetella bronchiseptica vaccine. Vet. Q. 1987. 9: 123133.
  • 82
    VanCott, J. L., Prada, A. E., McNeal, M. M., Stone, S. C., Basu, M., Huffer, Jr. B., Smiley, K. L. et al., Mice develop effective but delayed protective immune responses when immunized as neonates either intranasally with nonliving VP6/LT(R192G) or orally with live rhesus rotavirus vaccine candidates. J. Virol. 2006. 80: 49494961.
  • 83
    Goriely, S., Van Lint, C., Dadkhah, R., Libin, M., De Wit, D., Demonte, D., Willems, F. and Goldman, M., A defect in nucleosome remodeling prevents IL-12(p35) gene transcription in neonatal dendritic cells. J. Exp. Med. 2004. 199: 10111016.
  • 84
    Arulanandam, B. P., Mittler, J. N., Lee, W. T., O'Toole, M. and Metzger, D. W., Neonatal administration of IL-12 enhances the protective efficacy of antiviral vaccines. J. Immunol. 2000. 164: 36983704.
  • 85
    Parkinson, T., The future of toll-like receptor therapeutics. Curr. Opin. Mol. Ther. 2008. 10: 2131.
  • 86
    Ishii, K. J. and Akira, S., Toll or toll-free adjuvant path toward the optimal vaccine development. J. Clin. Immunol. 2007. 27: 363371.
  • 87
    Ma, Y. and Ross, A. C., The anti-tetanus immune response of neonatal mice is augmented by retinoic acid combined with polyriboinosinic:polyribocytidylic acid. Proc. Natl. Acad. Sci. USA 2005. 102: 1355613561.
  • 88
    Kovarik, J., Bozzotti, P., Love-Homan, L., Pihlgren, M., Davis, H. L., Lambert, P. H., Krieg, A. M. and Siegrist, C. A., CpG oligodeoxynucleotides can circumvent the Th2 polarization of neonatal responses to vaccines but may fail to fully redirect Th2 responses established by neonatal priming. J. Immunol. 1999. 162: 16111617.
  • 89
    De Wit, D., Olislagers, V., Goriely, S., Vermeulen, F., Wagner, H., Goldman, M. and Willems, F., Blood plasmacytoid dendritic cell responses to CpG oligodeoxynucleotides are impaired in human newborns. Blood 2004. 103: 10301032.
  • 90
    Levy, O., Suter, E. E., Miller, R. L. and Wessels, M. R., Unique efficacy of Toll-like receptor 8 agonists in activating human neonatal antigen-presenting cells. Blood 2006. 108: 12841290.
  • 91
    Philbin, V. J. and Levy, O., Immunostimulatory activity of Toll-like receptor 8 agonists towards human leucocytes: basic mechanisms and translational opportunities. Biochem. Soc. Trans. 2007. 35: 14851491.
  • 92
    Peng, G., Guo, Z., Kiniwa, Y., Voo, K. S., Peng, W., Fu, T., Wang, D. Y. et al., Toll-like receptor 8-mediated reversal of CD4+ regulatory T cell function. Science 2005. 309: 13801384.
  • 93
    Wille-Reece, U., Flynn, B. J., Lore, K., Koup, R. A., Kedl, R. M., Mattapallil, J. J., Weiss, W. R. et al., HIV Gag protein conjugated to a Toll-like receptor 7/8 agonist improves the magnitude and quality of Th1 and CD8+T cell responses in nonhuman primates. Proc. Natl. Acad. Sci. USA 2005. 102: 1519015194.
  • 94
    Wille-Reece, U., Flynn, B. J., Lore, K., Koup, R. A., Miles, A. P., Saul, A., Kedl, R. M. et al., Toll-like receptor agonists influence the magnitude and quality of memory T cell responses after prime-boost immunization in nonhuman primates. J. Exp. Med. 2006. 203: 12491258.
  • 95
    Zhao, J., Kim, K. D., Yang, X., Auh, S., Fu, Y. X. and Tang, H., Hyper innate responses in neonates lead to increased morbidity and mortality after infection. Proc. Natl. Acad. Sci. USA 2008. 105: 75287533.