SEARCH

SEARCH BY CITATION

References

  • 1
    Reits, E., Griekspoor, A., Neijssen, J., Groothuis, T., Jalink, K., van Veelen, P., Janssen, H. et al., Peptide diffusion, protection, and degradation in nuclear and cytoplasmic compartments before antigen presentation by MHC class I. Immunity 2003. 18: 97108.
  • 2
    van Endert, P. M., Riganelli, D., Greco, G., Fleischhauer, K., Sidney, J., Sette, A. and Bach, J. F., The peptide-binding motif for the human transporter associated with antigen processing. J. Exp. Med. 1995. 182: 18831895.
  • 3
    Serwold, T., Gonzalez, F., Kim, J., Jacob, R. and Shastri, N., ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature 2002. 419: 480483.
  • 4
    Doytchinova, I. A., Guan, P. and Flower, D. R., Identifying human MHC supertypes using bioinformatic methods. J. Immunol. 2004. 172: 43144323.
  • 5
    Sidney, J., Southwood, S., Pasquetto, V. and Sette, A., Simultaneous prediction of binding capacity for multiple molecules of the HLA B44 supertype. J. Immunol. 2003. 171: 59645974.
  • 6
    Weinschenk, T., Gouttefangeas, C., Schirle, M., Obermayr, F., Walter, S., Schoor, O., Kurek, R. et al., Integrated functional genomics approach for the design of patient-individual antitumor vaccines. Cancer Res. 2002. 62: 58185827.
  • 7
    Burrows, S. R., Elkington, R. A., Miles, J. J., Green, K. J., Walker, S., Haryana, S. M., Moss, D. J. et al., Promiscuous CTL recognition of viral epitopes on multiple human leukocyte antigens: biological validation of the proposed HLA A24 supertype. J. Immunol. 2003. 171: 1407-1412.
  • 8
    Takedatsu, H., Shichijo, S., Katagiri, K., Sawamizu, H., Sata, M. and Itoh, K., Identification of peptide vaccine candidates sharing among HLA-A3+, -A11+, -A31+, and -A33+cancer patients. Clin. Cancer Res. 2004. 10: 11121120.
  • 9
    Sidney, J., Grey, H. M., Kubo, R. T. and Sette, A., Practical, biochemical and evolutionary implications of the discovery of HLA class I supermotifs. Immunol. Today 1996. 17: 261266.
  • 10
    Hickman, H. D., Luis, A. D., Buchli, R., Few, S. R., Sathiamurthy, M., VanGundy, R. S., Giberson, C. F. and Hildebrand, W. H., Toward a definition of self: proteomic evaluation of the class I peptide repertoire. J. Immunol. 2004. 172: 29442952.
  • 11
    Krüger, T., Schoor, O., Lemmel, C., Kraemer, B., Reichle, C., Dengjel, J., Weinschenk, T. et al., Lessons to be learned from primary renal cell carcinomas: novel tumor antigens and HLA ligands for immunotherapy. Cancer Immunol. Immunother. 2005. 54: 826836.
  • 12
    Bade-Doeding, C., DeLuca, D. S., Seltsam, A., Blasczyk, R. and Eiz-Vesper, B., Amino acid 95 causes strong alteration of peptide position Pomega in HLA-B*41 variants. Immunogenetics 2007. 59: 253259.
  • 13
    Cao, K., Hollenbach, J., Shi, X., Shi, W., Chopek, M. and Fernandez-Vina, M. A., Analysis of the frequencies of HLA-A, B, and C alleles and haplotypes in the five major ethnic groups of the United States reveals high levels of diversity in these loci and contrasting distribution patterns in these populations. Hum. Immunol. 2001. 62: 10091030.
  • 14
    Schipper, R. F., van Els, C. A., D'Amaro, J. and Oudshoorn, M., Minimal phenotype panels. A method for achieving maximum population coverage with a minimum of HLA antigens. Hum. Immunol. 1996. 51: 9598.
  • 15
    Macdonald, W. A., Purcell, A. W., Mifsud, N. A., Ely, L. K., Williams, D. S., Chang, L., Gorman, J. J. et al., A naturally selected dimorphism within the HLA-B44 supertype alters class I structure, peptide repertoire, and T cell recognition. J. Exp. Med. 2003. 198: 679691.
  • 16
    Thorpe, C. J. and Travers, P. J., Prediction of an HLA-B44 binding motif by the alignment of known epitopes and molecular modeling of the antigen binding cleft. Immunogenetics 1994. 40: 303305.
  • 17
    Zhang, C., Anderson, A. and DeLisi, C., Structural principles that govern the peptide-binding motifs of class I MHC molecules. J. Mol. Biol. 1998. 281: 929947.
  • 18
    Zernich, D., Purcell, A. W., Macdonald, W. A., Kjer-Nielsen, L., Ely, L. K., Laham, N., Crockford, T. et al., Natural HLA class I polymorphism controls the pathway of antigen presentation and susceptibility to viral evasion. J. Exp. Med. 2004. 200: 13-24.
  • 19
    Williams, A. P., Peh, C. A., Purcell, A. W., McCluskey, J. and Elliott, T., Optimization of the MHC class I peptide cargo is dependent on tapasin. Immunity 2002. 16: 509-520.
  • 20
    Robinson, J., Waller, M. J., Parham, P., de Groot, N., Bontrop, R., Kennedy, L. J., Stoehr, P. and Marsh, S. G., IMGT/HLA and IMGT/MHC: sequence databases for the study of the major histocompatibility complex. Nucleic Acids Res. 2003. 31: 311314.
  • 21
    Snary, D., Barnstable, C. J., Bodmer, W. F. and Crumpton, M. J., Molecular structure of human histocompatibility antigens: the HLA-C series. Eur. J. Immunol. 1977. 7: 580585.
  • 22
    McCutcheon, J. A., Gumperz, J., Smith, K. D., Lutz, C. T. and Parham, P., Low HLA-C expression at cell surfaces correlates with increased turnover of heavy chain mRNA. J. Exp. Med. 1995. 181: 20852095.
  • 23
    Bihl, F. K., Loggi, E., Chisholm III, J. V., Hewitt, H. S., Henry, L. M., Linde, C., Suscovich, T. J. et al., Simultaneous assessment of cytotoxic T lymphocyte responses against multiple viral infections by combined usage of optimal epitope matrices, anti- CD3lmAb T-cell expansion and “RecycleSpot”. J. Transl. Med. 2005. 3: 20.
  • 24
    Davenport, M. P., Smith, K. J., Barouch, D., Reid, S. W., Bodnar, W. M., Willis, A. C., Hunt, D. F. and Hill, A. V., HLA class I binding motifs derived from random peptide libraries differ at the COOH terminus from those of eluted peptides. J. Exp. Med. 1997. 185: 367371.
  • 25
    Sidney, J., del Guercio, M. F., Southwood, S., Engelhard, V. H., Appella, E., Rammensee, H. G., Falk, K. et al., Several HLA alleles share overlapping peptide specificities. J. Immunol. 1995. 154: 247259.
  • 26
    Barnstable, C. J., Bodmer, W. F., Brown, G., Galfre, G., Milstein, C., Williams, A. F. and Ziegler, A., Production of monoclonal antibodies to group A erythrocytes, HLA and other human cell surface antigens – new tools for genetic analysis. Cell 1978. 14: 920.
  • 27
    Rebai, N. and Malissen, B., Structural and genetic analyses of HLA class I molecules using monoclonal xenoantibodies. Tissue Antigens 1983. 22: 107117.
  • 28
    Weinzierl, A. O., Maurer, D., Altenberend, F., Schneiderhan-Marra, N., Klingel, K., Schoor, O., Wernet, D. et al., A cryptic vascular endothelial growth factor T-cell epitope: identification and characterization by mass spectrometry and T-cell assays. Cancer Res. 2008. 68: 24472454.
  • 29
    Lemmel, C., Weik, S., Eberle, U., Dengjel, J., Kratt, T., Becker, H. D., Rammensee, H. G. and Stevanovic, S., Differential quantitative analysis of MHC ligands by mass spectrometry using stable isotope labeling. Nat. Biotechnol. 2004. 22: 450454.
  • 30
    Weinzierl, A. O., Lemmel, C., Schoor, O., Müller, M., Krüger, T., Wernet, D., Hennenlotter, J. et al., Distorted relation between mRNA copy number and corresponding major histocompatibility complex ligand density on the cell surface. Mol. Cell Proteomics 2007. 6: 102113.
  • 31
    Rammensee, H., Bachmann, J., Emmerich, N. P., Bachor, O. A. and Stevanovic, S., SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 1999. 50: 213219.