• 1
    Holgate, S. T., Pathogenesis of asthma. Clin. Exp. Allergy 2008. 38: 872897.
  • 2
    Choi, O. H., Kim, J. H. and Kinet, J. P., Calcium mobilization via sphingosine kinase in signalling by the FceRI antigen receptor. Nature 1996. 18: 634636.
  • 3
    Melendez, A. J. and Khaw, A. K., Dichotomy of Ca2+ signals triggered by different phospholipid pathways in antigen stimulation of human mast cells. J. Biol. Chem. 2002. 277: 1725517262.
  • 4
    Jolly, P. S., Bektas, M., Olivera, A., Gonzalez-Espinosa, C., Proia, R. L., Rivera, J., Milstien, S. and Spiegel, S., Transactivation of sphingosine-1-phosphate receptors by FcepsilonRI triggering is required for normal mast cell degranulation and chemotaxis. J. Exp. Med. 2004. 199: 959970.
  • 5
    Olivera, A., Urtz, N., Mizugishi, K., Yamashita, Y., Gilfillan, A. M., Furumoto, Y., Gu, H. et al., IgE-dependent activation of sphingosine kinases 1 and 2 and secretion of sphingosine 1-phosphate requires Fyn kinase and contributes to mast cell responses. J. Biol. Chem. 2006. 281: 25152525.
  • 6
    Baumruker, T. and Prieschl, E. E., Sphingolipids and the regulation of the immune response. Semin. Immunol. 2002. 14: 5763.
  • 7
    Alemany, R., van Koppen, C. J., Danneberg, K., ter Braak, M. and Meyer zu Henringdorf, D., Regulation and functional roles of sphingosine kinases. Naunyn Schmiedebergs Arch Pharmacol. 2007. 374: 413428.
  • 8
    Spiegel, S. and Milstien, S., Functions of the multifaceted family of sphingosine kinases and some close relatives. J. Biol. Chem. 2007. 282: 21252129.
  • 9
    Melendez, A. J., Sphingosine kinase signalling in immune cells: potential as novel therapeutic targets. Biochim. Biophys. Acta 2008. 1784: 6675.
  • 10
    Spiegel, S. and Milstien, S., Sphingosine 1-phosphate, a key cell signaling molecule. J. Biol. Chem. 2002. 277: 2585125854.
  • 11
    Rosen, H. and Goetzl, E. J., Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat. Rev. Immunol. 2005. 5: 560570.
  • 12
    Melendez, A. J., Floto, R. A., Gillooly, D. J., Harnett, M. M. and Allen, J. M., FcgRI coupling to phospholipase D initiates sphingosine kinase mediated calcium mobilization and vesicular trafficking. J. Biol. Chem. 1998. 273: 93939402.
  • 13
    Melendez, A., Floto, R. A., Cameron, A. J., Gillooly, D. J., Harnett, M. M. and Allen, J. M., A molecular switch changes the signalling pathway used by the Fc gamma RI antibody receptor to mobilise calcium. Curr. Biol. 1998. 8: 210221.
  • 14
    Alemany, R., Meyer zu Heringdorf, D., Koppen, C. J. and Jakobs, K. H., Formyl peptide receptor signaling in HL-60 cells through sphingosine kinase. J. Biol. Chem. 1999. 274: 39943999.
  • 15
    Melendez, A. J. and Ibrahim, F. B. M., Antisense knockdown of sphingosine kinase 1 in human macrophages inhibits C5a receptor-dependent signal transduction, Ca2+ signals enzyme release, cytokine production, and chemotaxis. J. Immunol. 2004. 173: 15961603.
  • 16
    Ibrahim, F. B. M., Pang, S.-J. and Melendez, A. J., Anaphylatoxin signaling in human neutrophils: a key role for sphingosine kinase. J. Biol. Chem. 2004. 279: 4480244811.
  • 17
    Olivera, A., Edsall, L., Poulton, S., Kazlauskas, A. and Spiegel, S., Platelet-derived growth factor-induced activation of sphingosine kinase requires phosphorylation of the PDGF receptor tyrosine residue responsible for binding of PLCgamma. FASEB J. 1999. 13: 15931600.
  • 18
    Bornfeldt, K. E., Graves, L. M., Raines, E. W., Igarashi, Y., Wayman, G., Yamamura, S., Yatomi, Y. et al., Sphingosine-1-phosphate inhibits PDGF-induced chemotaxis of human arterial smooth muscle cells: spatial and temporal modulation of PDGF chemotactic signal transduction. J. Cell Biol. 1995. 130: 193206.
  • 19
    Xia, P., Gamble, J. R., Rye, K. A., Wang, L., Hii, C. S., Cockerill, P., Khew-Goodaall, Y. et al., Tumor necrosis factor-alpha induces adhesion molecule expression through the sphingosine kinase pathway. Proc. Natl. Acad. Sci. USA 1998. 95: 1419614201.
  • 20
    Zhi, L., Leung, B. P. and Melendez, A. J., Sphingosine kinase 1 regulates pro-inflammatory responses triggered by TNF-α in primary human monocytes. J. Cell. Physiol. 2006. 208: 109115.
  • 21
    English, D., Welch, Z., Kovala, A. T., Harvey, K., Volpert, O. V., Brindley, D. N. and Garcia, J. G., Sphingosine 1-phosphate released from platelets during clotting accounts for the potent endothelial cell chemotactic activity of blood serum and provides a novel link between hemostasis and angiogenesis. FASEB J. 2000. 14: 22552265.
  • 22
    Kimura, T., Sato, K., Kuwabara, A., Tomura, H., Ishiwara, M., Kobayashi, I., Ui, M. and Okajima, F., Sphingosine 1-phosphate may be a major component of plasma lipoproteins responsible for the cytoprotective actions in human umbilical vein endothelial cells. J. Biol. Chem. 2001. 276: 3178031785.
  • 23
    Lee, M. J., Van Brocklyn, J. R., Thangada, S., Liu, C. H., Hand, A. R., Menzeleev, R., Spiegel, S. and Hla, T., Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 1998. 279: 15521555.
  • 24
    Van Brocklyn, J. R., Lee, M. J., Menzeleev, R., Olivera, A., Edsall, L., Cuvillier, O., Thomas, D. M. et al., Dual actions of sphingosine-1-phosphate: extracellular through the Gi-coupled receptor Edg-1 and intracellular to regulate proliferation and survival. J. Cell. Biol. 1998. 142: 229240.
  • 25
    Goetzl, E. J. and An, S., Diversity of cellular receptors and functions for the lysophospholipid growth factors lysophosphatidic acid and sphingosine 1-phosphate. FASEB J. 1998. 12: 15891598.
  • 26
    Kon, J., Sato, K., Watanabe, T., Tomura, H., Kuwabara, A., Kimura, T., Tamama, K. et al., Comparison of intrinsic activities of the putative sphingosine 1-phosphate receptor subtypes to regulate several signaling pathways in their cDNA-transfected Chinese hamster ovary cells. J. Biol. Chem. 1999. 274: 2394023947.
  • 27
    Hla, T., Lee, M. J., Ancellin, N., Paik, J. H. and Kluk, M. J., Lysophospholipids: receptor revelations. Science 2001. 294: 18751878.
  • 28
    Van Brocklyn, J. R., Behbahani, B. and Lee, N. H., Homodimerization and heterodimerization of S1P/EDG sphingosine-1-phosphate receptors. Biochim. Biophys. Acta 2002. 1582: 8993.
  • 29
    Kohama, T., Olivera, A., Edsall, L., Nagiec, M. M., Dickson, R. and Spiegel, S., Molecular cloning and functional characterization of murine sphingosine kinase. J. Biol. Chem. 1998. 273: 2372223728.
  • 30
    Melendez, A. J., Carlos-Dias, E., Gosink, M., Allen, J. M. and Takacs, L., Human sphingosine kinase: molecular cloning, functional characterization and tissue distribution. Gene 2000. 251: 1926.
  • 31
    Pitson, S. M., D'Andrea, R. J., Vandeleur, L., Moretti, P. A., Xia, P., Gamble, J. R., Vadas, M. A. and Wattenberg, B. W., Human sphingosine kinase: purification, molecular cloning and characterization of the native and recombinant enzymes. Biochem. J. 2000. 350: 429441.
  • 32
    Liu, H., Sugiura, M., Nava, V. E., Edsall, L. C., Kono, K., Poulton, S., Milstien, S. et al., Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform. J. Biol. Chem. 2000. 275: 1951319520.
  • 33
    Prieschl, E. E., Csonga, R., Novotny, V., Kikuchi, G. E. and Baumruker, T., The balance between sphingosine and sphingosine-1-phosphate is decisive for mast cell activation after Fc epsilon receptor I triggering. J. Exp. Med. 1999. 190: 18.
  • 34
    Jolly, P. S., Bektas, M., Olivera, A., Gonzalez-Espinosa, C., Proia, R. L., Rivera, J., Milstien, S. and Spiegel, S., Transactivation of sphingosine-1-phosphate receptors by Fc{epsilon}RI triggering is required for normal mast cell degranulation and chemotaxis. J. Exp. Med. 2004. 199: 959970.
  • 35
    Olivera, A., Mizugishi, K., Tikhonova, A., Ciaccia, L., Odom, S., Proia, R. L. and Rivera, J., The sphingosine kinase-sphingosine-1-phosphate axis is a determinant of mast cell function and anaphylaxis. Immunity 2007. 26: 287297.
  • 36
    Oskeritzian, C. A., Alvarez, S. E., Hait, N. C., Price, M. M., Milstien, S. and Spiegel, S., Distinct roles of sphingosine kinases 1 and 2 in human mast-cell functions. Blood 2008. 111: 41934200.
  • 37
    Jayapal, M., Tay, H. K., Reghunathan, R., Zhi, L., Chow, K. K., Rauff, M. and Melendez, A. J., Genome-wide gene expression profiling of human mast cells stimulated by IgE or FceRI-aggregation reveals a complex network of genes involved in inflammatory responses. BMC Genomics 2006. 7: 210.
  • 38
    Melendez, A. J., Harnett, M. M., Pushparaj, P. N., Wong, W. S. F., Tay, H. K., McSharry, C. P. and Harnett, W., Inhibition of FceRI-mediated mast cell responses by ES-62, a product of parasitic filarial nematodes. Nat. Med. 2007. 13: 13751381.
  • 39
    Bischoff, S. C., Role of mast cells in allergic and non-allergic immune responses: comparison of human and murine data. Nat. Rev. Immunol. 2007. 7: 93104.
  • 40
    Cheng, A. M., Negishi, I., Anderson, S. J., Chan, A. C., Bolen, J., Loh, D. Y. and Pawson, T., The Syk and ZAP-70 SH2-containing tyrosine kinases are implicated in pre-T cell receptor signaling. Proc. Natl. Acad. Sci. USA 1997. 94: 97979801.
  • 41
    Sullivan, S. D., Asthma in the United States: recent trends and current status. J. Manag. Care Pharm. 2003. 9: 37.
  • 42
    Brightling, C. E., Bradding, P., Symon, F. A., Holgate, S. T., Wardlaw, A. J. and Pavord, I. D., Mast-cell infiltration of airway smooth muscle in asthma. N. Engl. J. Med. 2002. 346: 16991705.
  • 43
    Carroll, N. G., Mutavdzic, S. and James, A. L., Increased mast cells and neutrophils in submucosal mucous glands and mucus plugging in patients with asthma. Thorax 2002. 57: 677682.
  • 44
    Bradding, P., Roberts, J. A., Britten, K. M., Montefort, S., Djukanovic, R., Mueller, R., Heusser, C. H. et al., Interleukin-4, -5, and -6 and tumor necrosis factor-alpha in normal and asthmatic airways: evidence for the human mast cell as a source of these cytokines. Am. J. Respir. Cell. Mol. Biol. 1994. 10: 471480.
  • 45
    Siddiqui, S., Hollins, F., Saha, S. and Brightling, C. E., Inflammatory cell microlocalisation and airway dysfunction: cause and effect?. Eur. Respir. J. 2007. 30: 10431056.
  • 46
    Ammit, A. J., Hastie, A. T., Edsall, L. C., Hoffman, R. K., Amrani, Y., Krymskaya, V. P., Kane, S. A. et al., Sphingosine 1-phosphate modulates human airway smooth muscle cell functions that promote inflammation and airway remodelling in asthma. FASEB J. 2001. 15: 12121214.
  • 47
    Rosenfeldt, H. M., Amrani, Y., Watterson, K. R., Murthy, K. S., Panettieri, R. A. and Spiegel, S., Sphingosine-1-phosphate stimulates contraction of human airway smooth muscle cells. FASEB J. 2003. 17: 17891799.
  • 48
    Lai, W. Q., Goh, H. H., Bao, Z., Wong, W. S., Melendez, A. J. and Leung, B. P., The role of sphingosine kinase in a murine model of allergic asthma. J. Immunol. 2008. 180: 43234329.
  • 49
    Nishiuma, T., Nishimura, Y., Okada, T., Kuramoto, E., Kotani, Y., Jahangeer, S., Nakamura, S., Inhalation of sphingosine kinase inhibitor attenuates airway inflammation in asthmatic mouse model. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2008. 294: L1085L1093.
  • 50
    Liao, J. J., Huang, M. C. and Goetzl, E. J., Cutting edge: alternative signaling of Th17 cell development by sphingosine 1-phosphate. J. Immunol. 2007. 178: 54255428.