SEARCH

SEARCH BY CITATION

References

  • 1
    Steinman, L. and Zamvil, S. S., How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis. Ann. Neurol. 2006. 60: 1221.
  • 2
    Gutcher, I. and Becher, B., APC-derived cytokines and T cell polarization in autoimmune inflammation. J. Clin. Invest. 2007. 117: 11191127.
  • 3
    Langrish, C. L., Chen, Y., Blumenschein,W. M., Mattson, J., Basham, B., Sedgwick, J. D., McClanahan, et al., IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 2005. 201: 233240.
  • 4
    Haak, S., Croxford, A. L., Kreymborg, K., Heppner, F. L., Pouly, S., Becher, B. and Waisman, A., IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. J. Clin. Invest. 2009. 119: 6169.
  • 5
    Kreymborg, K., Etzensperger, R., Dumoutier, L., Haak, S., Rebollo, A., Buch, T., Heppner, F. L. and Weisman, A., IL-22 is expressed by TH17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. J. Immunol. 2007. 179: 80988104.
  • 6
    Zhang, G. X., Yu, S., Gran, B., Li, J., Siglienti, I., Chen, X., Calida, D. et al., Role of IL-12 receptor beta 1 in regulation of T cell response by APC in experimental autoimmune encephalomyelitis. J. Immunol. 2003. 171: 44854492.
  • 7
    Becher, B., Durell, B. G. and Noelle, R. J., Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J. Clin. Invest. 2002. 110: 493497.
  • 8
    Zhang, G. X., Gran, B., Yu, S., Li, J., Siglienti, I., Chen, X., Kamoun, M. and Rostami, A., Induction of experimental autoimmune encephalomyelitis in IL-12 receptor-beta 2-deficient mice: IL-12 responsiveness is not required in the pathogenesis of inflammatory demyelination in the central nervous system. J. Immunol. 2003. 170: 21532160.
  • 9
    Oppmann, B., Lesley, R., Blom, B., Timans, J. C., Xu,Y., Hunte, B., Vega, F. et al., Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 2000. 13: 715725.
  • 10
    Cua, D. J., Sherlock, J., Chen, Y., Murphy, C. A., Joyce, B., Seymour, B., Lucian, L. et al., Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003. 421: 744748.
  • 11
    Bettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T. B., Oukka, M., Weiner, H. L. and Kuchroo, V. K., Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006. 441: 235238.
  • 12
    Harrington, L. E., Hatton, R. D., Mangan, P. R., Turner, H., Murphy, T. L., Murphy, K. M. and Weaver, C. T., Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 2005. 6: 11231132.
  • 13
    Mangan, P. R., Harrington, L. E., O'Quinn, D. B., Helms, W. S., Bullard, D. C., Elson, C. O., Hatton, R. D.et al., Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 2006. 441: 231234.
  • 14
    Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. and Stockinger, B., TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006. 24: 179189.
  • 15
    Ivanov, I. I., McKenzie, B. S., Zhou, L., Tadokoro, C. E., Lepelley, A., Lafaille, J. J., Cua, D. J. and Littmann, D. R., The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006. 126: 11211133.
  • 16
    Aggarwal, S., Ghilardi, N., Xie, M. H., de Sauvage, F. J. and Gurney, A. L., Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 2003. 278: 19101914.
  • 17
    McGeachy, M. J., Bak-Jensen, K. S., Chen, Y., Tato, C. M., Blumenschein, W., McClanahan, T. and Cua, D. J., TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat. Immunol. 2007. 8: 13901397.
  • 18
    Stritesky, G. L., Yeh, N. and Kaplan, M. H., IL-23 promotes maintenance but not commitment to the TH17 lineage. J. Immunol. 2008. 181: 59485955.
  • 19
    Parham, C., Chirica, M., Timans, J., Vaisberg, E., Travis, M., Cheung, J., Pflanz, S. et al., A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J. Immunol. 2002. 168: 56995708.
  • 20
    Wu, C., Ferrante, J., Gately, M. K. and Magram, J., Characterization of IL-12 receptor beta1 chain (IL-12Rbeta1)-deficient mice: IL-12Rbeta1 is an essential component of the functional mouse IL-12 receptor. J. Immunol. 1997. 159: 16581665.
  • 21
    McGeachy, M. J., Chen, Y., Tato, C. M., Laurence, A., Joyce-Shaikh, B., Blumenschein, W. M., McClanahan, T. K. and Cua, D. J., The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat. Immunol. 2009. 10: 314324.
  • 22
    Kebir, H., Kreymborg, K., Ifergan, I., Dodelet-Devillers, A., Cayrol, R., Bernard, M., Giuliani, F. et al., Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nat. Med. 2007. 13: 11731175.
  • 23
    Kroenke, M. A., Carlson, T. J., Andjelkovic, A. V. and Segal,B. M., IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J. Exp. Med. 2008. 205: 15351541.
  • 24
    Zhang, F., Meng, G. and Strober, W., Interactions among the transcription factors Runx1, RORgammat and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nat. Immunol. 2008. 9: 12971306.
  • 25
    O'Connor, R. A., Prendergast, C. T., Sabatos, C. A., Lau, C. W., Leech, M. D., Wraith, D. C. and Anderton, S. M., Cutting edge: TH1 cells facilitate the entry of TH17 cells to the central nervous system during experimental autoimmune encephalomyelitis. J. Immunol. 2008. 181: 37503754.
  • 26
    Greter, M., Heppner, F. L., Lemos, M. P., Odermatt, B. M., Goebels, N., Laufer, T., Noelle, R. J. and Becher, B., Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat. Med. 2005. 11: 328334.