SEARCH

SEARCH BY CITATION

References

  • 1
    Sakaguchi, S., Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 2004. 22: 531562.
  • 2
    Shevach, E. M., Regulatory T cells in autoimmmunity. Annu. Rev. Immunol. 2000. 18: 423449.
  • 3
    Miyara, M. and Sakaguchi, S., Natural regulatory T cells: mechanisms of suppression. Trends Mol. Med. 2007. 13: 108116.
  • 4
    Friese, M. A. and Fugger, L., Autoreactive CD8+ T cells in multiple sclerosis: a new target for therapy? Brain 2005. 128: 17471763.
  • 5
    Jiang, H., Zhang, S. I. and Pernis, B., Role of CD8+ T cells in murine experimental allergic encephalomyelitis. Science 1992. 256: 12131215.
  • 6
    Koh, D. R., Fung-Leung, W. P., Ho, A., Gray, D., Acha-Orbea, H. and Mak, T. W., Less mortality but more relapses in experimental allergic encephalomyelitis in CD8−/− mice. Science 1992. 256: 12101213.
  • 7
    Huseby, E. S., Liggitt, D., Brabb, T., Schnabel, B., Ohlen, C. and Goverman, J., A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis. J. Exp. Med. 2001. 194: 669676.
  • 8
    Sun, D., Whitaker, J. N., Huang, Z., Liu, D., Coleclough, C., Wekerle, H. and Raine, C. S., Myelin antigen-specific CD8+ T cells are encephalitogenic and produce severe disease in C57BL/6 mice. J. Immunol. 2001. 166: 75797587.
  • 9
    Najafian, N., Chitnis, T., Salama, A. D., Zhu, B., Benou, C., Yuan, X., Clarkson, M. R. et al., Regulatory functions of CD8+CD28- T cells in an autoimmune disease model. J. Clin. Invest. 2003. 112: 10371048.
  • 10
    Lee, Y. H., Ishida, Y., Rifa'i, M., Shi, Z., Isobe, K. and Suzuki, H., Essential role of CD8+CD122+ regulatory T cells in the recovery from experimental autoimmune encephalomyelitis. J. Immunol. 2008. 180: 825832.
  • 11
    Linker, R. A., Rott, E., Hofstetter, H. H., Hanke, T., Toyka, K. V. and Gold, R., EAE in beta-2 microglobulin-deficient mice: axonal damage is not dependent on MHC-I restricted immune responses. Neurobiol. Disord. 2005. 19: 218228.
  • 12
    Jiang, H., Ware, R., Stall, A., Flaherty, L., Chess, L. and Pernis, B., Murine CD8+ T cells that specifically delete autologous CD4+ T cells expressing V beta 8 TCR: a role of the Qa-1 molecule. Immunity 1995. 2: 185194.
  • 13
    Jiang, H., Braunstein, N. S., Yu, B., Winchester, R. and Chess, L., CD8+ T cells control the TH phenotype of MBP-reactive CD4+ T cells in EAE mice. Proc. Natl. Acad. Sci. USA 2001. 98: 63016306.
  • 14
    Jiang, H., Curran, S., Ruiz-Vazquez, E., Liang, B., Winchester, R. and Chess, L., Regulatory CD8+ T cells fine-tune the myelin basic protein-reactive T cell receptor V beta repertoire during experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA 2003. 100: 83788383.
  • 15
    Hu, D., Ikizawa, K., Lu, L., Sanchirico, M. E., Shinohara, M. L. and Cantor, H., Analysis of regulatory CD8 T cells in Qa-1-deficient mice. Nat. Immunol. 2004. 5: 516523.
  • 16
    Gilliet, M. and Liu, Y. J., Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J. Exp. Med. 2002. 195: 695704.
  • 17
    Endharti, A. T., Rifa, I. M. S., Shi, Z., Fukuoka, Y., Nakahara, Y., Kawamoto, Y., Takeda, K. et al., Cutting edge: CD8+CD122+ regulatory T cells produce IL-10 to suppress IFN-gamma production and proliferation of CD8+ T cells. J. Immunol. 2005. 175: 70937097.
  • 18
    Myers, L., Croft, M., Kwon, B. S., Mittler, R. S. and Vella, A. T., Peptide-specific CD8 T regulatory cells use IFN-gamma to elaborate TGF-beta-based suppression. J. Immunol. 2005. 174: 76257632.
  • 19
    Smith, T. R. and Kumar, V., Revival of CD8+ Treg-mediated suppression. Trends Immunol. 2008. 29: 337342.
  • 20
    Lanzavecchia, A., Roosnek, E., Gregory, T., Berman, P. and Abrignani, S., T cells can present antigens such as HIV gp120 targeted to their own surface molecules. Nature 1988. 334: 530532.
  • 21
    Simpson, E., Suppression of the immune response by cytotoxic T cells. Nature 1988. 336: 426.
  • 22
    Vlad, G., Cortesini, R. and Suciu-Foca, N., License to heal: bidirectional interaction of antigen-specific regulatory T cells and tolerogenic APC. J. Immunol. 2005. 174: 59075914.
  • 23
    Chen, M. L., Yan, B. S., Bando, Y., Kuchroo, V. K. and Weiner, H. L., Latency-associated peptide identifies a novel CD4+CD25+ regulatory T cell subset with TGFbeta-mediated function and enhanced suppression of experimental autoimmune encephalomyelitis. J. Immunol. 2008. 180: 73277337.
  • 24
    Ochi, H., Abraham, M., Ishikawa, H., Frenkel, D., Yang, K., Basso, A. S., Wu, H. et al., Oral CD3-specific antibody suppresses autoimmune encephalomyelitis by inducing CD4+ CD25- LAP+ T cells. Nat. Med. 2006. 12: 627635.
  • 25
    Oida, T., Zhang, X., Goto, M., Hachimura, S., Totsuka, M., Kaminogawa, S. and Weiner, H. L., CD4+CD25- T cells that express latency-associated peptide on the surface suppress CD4+CD45RBhigh-induced colitis by a TGF-beta-dependent mechanism. J. Immunol. 2003. 170: 25162522.
  • 26
    Keski-Oja, J., Koli, K. and von Melchner, H., TGF-beta activation by traction? Trends Cell Biol. 2004. 14: 657659.
  • 27
    Miyazono, K., Ichijo, H. and Heldin, C. H., Transforming growth factor-beta: latent forms, binding proteins and receptors. Growth Factors 1993. 8: 1122.
  • 28
    Bienvenu, B., Martin, B., Auffray, C., Cordier, C., Becourt, C. and Lucas, B., Peripheral CD8+CD25+ T lymphocytes from MHC class II-deficient mice exhibit regulatory activity. J. Immunol. 2005. 175: 246253.
  • 29
    Fontenot, J. D., Gavin, M. A. and Rudensky, A. Y., Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 2003. 4: 330336.
  • 30
    Sansom, D. M. and Walker, L. S., The role of CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) in regulatory T-cell biology. Immunol. Rev. 2006. 212: 131148.
  • 31
    Read, S., Malmstrom, V. and Powrie, F., Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J. Exp. Med. 2000. 192: 295302.
  • 32
    Chen, W., Jin, W., Hardegen, N., Lei, K. J., Li, L., Marinos, N., McGrady, G. and Wahl, S. M., Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 2003. 198: 18751886.
  • 33
    Fantini, M. C., Becker, C., Monteleone, G., Pallone, F., Galle, P. R. and Neurath, M. F., Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25- T cells through Foxp3 induction and down-regulation of Smad7. J. Immunol. 2004. 172: 51495153.
  • 34
    Piccirillo, C. A., Letterio, J. J., Thornton, A. M., McHugh, R. S., Mamura, M., Mizuhara, H. and Shevach, E. M., CD4(+)CD25(+) regulatory T cells can mediate suppressor function in the absence of transforming growth factor beta1 production and responsiveness. J. Exp. Med. 2002. 196: 237246.
  • 35
    Gorelik, L. and Flavell, R. A., Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 2000. 12: 171181.
  • 36
    Green, E. A., Gorelik, L., McGregor, C. M., Tran, E. H. and Flavell, R. A., CD4+CD25+ T regulatory cells control anti-islet CD8+ T cells through TGF-beta-TGF-beta receptor interactions in type 1 diabetes. Proc. Natl. Acad. Sci. USA 2003. 100: 1087810883.
  • 37
    Chen, M. L., Pittet, M. J., Gorelik, L., Flavell, R. A., Weissleder, R., von Boehmer, H. and Khazaie, K., Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo. Proc. Natl. Acad. Sci. USA 2005. 102: 419424.
  • 38
    Sawitzki, B., Kingsley, C. I., Oliveira, V., Karim, M., Herber, M. and Wood, K. J., IFN-gamma production by alloantigen-reactive regulatory T cells is important for their regulatory function in vivo. J. Exp. Med. 2005. 201: 19251935.
  • 39
    Voorthuis, J. A., Uitdehaag, B. M., De Groot, C. J., Goede, P. H., van der Meide, P. H. and Dijkstra, C. D., Suppression of experimental allergic encephalomyelitis by intraventricular administration of interferon-gamma in Lewis rats. Clin. Exp. Immunol. 1990. 81: 183188.
  • 40
    Furlan, R., Brambilla, E., Ruffini, F., Poliani, P. L., Bergami, A., Marconi, P. C., Franciotta, D. M. et al., Intrathecal delivery of IFN-gamma protects C57BL/6 mice from chronic-progressive experimental autoimmune encephalomyelitis by increasing apoptosis of central nervous system-infiltrating lymphocytes. J. Immunol. 2001. 167: 18211829.
  • 41
    Ferber, I. A., Brocke, S., Taylor-Edwards, C., Ridgway, W., Dinisco, C., Steinman, L., Dalton, D. and Fathman, C. G., Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J. Immunol. 1996. 156: 57.
  • 42
    Krakowski, M. and Owens, T., Interferon-gamma confers resistance to experimental allergic encephalomyelitis. Eur. J. Immunol. 1996. 26: 16411646.
  • 43
    Willenborg, D. O., Fordham, S., Bernard, C. C., Cowden, W. B. and Ramshaw, I. A., IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J. Immunol. 1996. 157: 32233227.
  • 44
    Billiau, A., Heremans, H., Vandekerckhove, F., Dijkmans, R., Sobis, H., Meulepas, E. and Carton, H., Enhancement of experimental allergic encephalomyelitis in mice by antibodies against IFN-gamma. J. Immunol. 1988. 140: 15061510.
  • 45
    Komiyama, Y., Nakae, S., Matsuki, T., Nambu, A., Ishigame, H., Kakuta, S., Sudo, K. and Iwakura, Y., IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J. Immunol. 2006. 177: 566573.
  • 46
    Izawa, A., Yamaura, K., Albin, M. J., Jurewicz, M., Tanaka, K., Clarkson, M. R., Ueno, T. et al., A novel alloantigen-specific CD8+PD1+ regulatory T cell induced by ICOS-B7h blockade in vivo. J. Immunol. 2007. 179: 786796.
  • 47
    Guillonneau, C., Hill, M., Hubert, F. X., Chiffoleau, E., Herve, C., Li, X. L., Heslan, M. et al., CD40Ig treatment results in allograft acceptance mediated by CD8CD45RC T cells, IFN-gamma, and indoleamine 2,3-dioxygenase. J. Clin. Invest. 2007. 117: 10961106.
  • 48
    Cautain, B., Damoiseaux, J., Bernard, I., van Straaten, H., van Breda Vriesman, P., Boneu, B., Druet, P. and Saoudi, A., Essential role of TGF-beta in the natural resistance to experimental allergic encephalomyelitis in rats. Eur. J. Immunol. 2001. 31: 11321140.
  • 49
    Gonzalez-Garcia, I., Zhao, Y., Ju, S., Gu, Q., Liu, L., Kolls, J. K. and Lu, B., IL-17 signaling-independent central nervous system autoimmunity is negatively regulated by TGF-beta. J. Immunol. 2009. 182: 26652671.
  • 50
    Dalton, D. K., Haynes, L., Chu, C. Q., Swain, S. L. and Wittmer, S., Interferon gamma eliminates responding CD4 T cells during mycobacterial infection by inducing apoptosis of activated CD4 T cells. J. Exp. Med. 2000. 192: 117122.
  • 51
    Bocek P., Jr., Foucras, G. and Paul, W. E., Interferon gamma enhances both in vitro and in vivo priming of CD4+ T cells for IL-4 production. J. Exp. Med. 2004. 199: 16191630.
  • 52
    Vermeire, K., Heremans, H., Vandeputte, M., Huang, S., Billiau, A. and Matthys, P., Accelerated collagen-induced arthritis in IFN-gamma receptor-deficient mice. J. Immunol. 1997. 158: 55075513.
  • 53
    Jones, L. S., Rizzo, L. V., Agarwal, R. K., Tarrant, T. K., Chan, C. C., Wiggert, B. and Caspi, R. R., IFN-gamma-deficient mice develop experimental autoimmune uveitis in the context of a deviant effector response. J. Immunol. 1997. 158: 59976005.
  • 54
    Duong, T. T., St Louis, J., Gilbert, J. J., Finkelman, F. D. and Strejan, G. H., Effect of anti-interferon-gamma and anti-interleukin-2 monoclonal antibody treatment on the development of actively and passively induced experimental allergic encephalomyelitis in the SJL/J mouse. J. Neuroimmunol. 1992. 36: 105115.
  • 55
    Balashov, K. E., Khoury, S. J., Hafler, D. A. and Weiner, H. L., Inhibition of T cell responses by activated human CD8+ T cells is mediated by interferon-gamma and is defective in chronic progressive multiple sclerosis. J. Clin. Invest. 1995. 95: 27112719.
  • 56
    Shtrichman, R. and Samuel, C. E., The role of gamma interferon in antimicrobial immunity. Curr. Opin. Microbiol. 2001. 4: 251259.
  • 57
    Kishimoto, K., Sandner, S., Imitola, J., Sho, M., Li, Y., Langmuir, P. B., Rothstein, D. M. et al., Th1 cytokines, programmed cell death, and alloreactive T cell clone size in transplant tolerance. J. Clin. Invest. 2002. 109: 14711479.
  • 58
    Refaeli, Y., Van Parijs, L., Alexander, S. I. and Abbas, A. K., Interferon gamma is required for activation-induced death of T lymphocytes. J. Exp. Med. 2002. 196: 9991005.
  • 59
    Wang, Z., Hong, J., Sun, W., Xu, G., Li, N., Chen, X., Liu, A. et al., Role of IFN-gamma in induction of Foxp3 and conversion of CD4+ CD25- T cells to CD4+ Tregs. J. Clin. Invest. 2006. 116: 24342441.
  • 60
    Fallarino, F., Grohmann, U., Hwang, K. W., Orabona, C., Vacca, C., Bianchi, R., Belladonna, M. L. et al., Modulation of tryptophan catabolism by regulatory T cells. Nat. Immunol. 2003. 4: 12061212.
  • 61
    Harrington, L. E., Hatton, R. D., Mangan, P. R., Turner, H., Murphy, T. L., Murphy, K. M. and Weaver, C. T., Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 2005. 6: 11231132.
  • 62
    Tang, Q. and Bluestone, J. A., The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat. Immunol. 2008. 9: 239244.
  • 63
    Jonuleit, H., Schmitt, E., Kakirman, H., Stassen, M., Knop, J. and Enk, A. H., Infectious tolerance: human CD25(+) regulatory T cells convey suppressor activity to conventional CD4(+) T helper cells. J. Exp. Med. 2002. 196: 255260.
  • 64
    Coombes, J. L., Siddiqui, K. R., Arancibia-Carcamo, C. V., Hall, J., Sun, C. M., Belkaid, Y. and Powrie, F., A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J. Exp. Med. 2007. 204: 17571764.
  • 65
    Correale, J. and Villa, A., Isolation and characterization of CD8+ regulatory T cells in multiple sclerosis. J. Neuroimmunol. 2008. 195: 121134.
  • 66
    Tennakoon, D. K., Mehta, R. S., Ortega, S. B., Bhoj, V., Racke, M. K. and Karandikar, N. J., Therapeutic induction of regulatory, cytotoxic CD8+ T cells in multiple sclerosis. J. Immunol. 2006. 176: 71197129.
  • 67
    Antel, J. P., Bania, M. B., Reder, A. and Cashman, N., Activated suppressor cell dysfunction in progressive multiple sclerosis. J. Immunol. 1986. 137: 137141.
  • 68
    Hohlfeld, R. and Wekerle, H., Autoimmune concepts of multiple sclerosis as a basis for selective immunotherapy: from pipe dreams to (therapeutic) pipelines. Proc. Natl. Acad. Sci. USA 2004. 101: 1459914606.
  • 69
    Karandikar, N. J., Crawford, M. P., Yan, X., Ratts, R. B., Brenchley, J. M., Ambrozak, D. R., Lovett-Racke, A. E. et al., Glatiramer acetate (Copaxone) therapy induces CD8(+) T cell responses in patients with multiple sclerosis. J. Clin. Invest. 2002. 109: 641649.
  • 70
    Bettelli, E., Pagany, M., Weiner, H. L., Linington, C., Sobel, R. A. and Kuchroo, V. K., Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J. Exp. Med. 2003. 197: 10731081.
  • 71
    Cautain, B., Damoiseaux, J., Bernard, I., Xystrakis, E., Fournie, E., van Breda Vriesman, P., Druet, P. and Saoudi, A., The CD8 T cell compartment plays a dominant role in the deficiency of Brown-Norway rats to mount a proper type 1 immune response. J. Immunol. 2002. 168: 162170.