• 1
    Geissmann, F., Auffray, C., Palframan, R., Wirrig, C., Ciocca, A., Campisi, L., Narni-Mancinelli, E. and Lauvau, G., Blood monocytes: distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of T-cell responses. Immunol. Cell Biol. 2008. 86: 398408.
  • 2
    Serbina, N. V., Jia, T., Hohl, T. M. and Pamer, E. G., Monocyte-mediated defense against microbial pathogens. Annu. Rev. Immunol. 2008. 26: 421452.
  • 3
    Rydström, A. and Wick, M. J., Monocyte recruitment, activation, and function in the gut-associated lymphoid tissue during oral Salmonella infection. J. Immunol. 2007. 178: 57895801.
  • 4
    Sundquist, M. and Wick, M. J., TNF-α-dependent and -independent maturation of dendritic cells and recruited CD11cintCD11b+ cells during oral Salmonella infection. J. Immunol. 2005. 175: 32873298.
  • 5
    Tam, M. A., Rydström, A., Sundquist, M. and Wick, M. J., Early cellular responses to Salmonella infection: Dendritic cells, monocytes and more. Immunol. Rev. 2008. 225: 140162.
  • 6
    Macpherson, A. J. and Uhr, T., Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 2004. 303: 16621665.
  • 7
    Serbina, N. V. and Pamer, E. G., Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat. Immunol. 2006. 7: 311317.
  • 8
    Wengner, A. M., Pitchford, S. C., Furze, R. C. and Rankin, S. M., The coordinated action of G-CSF and ELR+CXC chemokines in neutrophil mobilization during acute inflammation. Blood 2008. 111: 4249.
  • 9
    Tsou, C. L., Peters, W., Si, Y., Slaymaker, S., Aslanian, A. M., Weisberg, S. P., Mack, M. and Charo, I. F., Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J. Clin. Invest. 2007. 117: 902909.
  • 10
    Engel, D. R., Maurer, J., Tittel, A. P., Weisheit, C., Cavlar, T., Schumak, B., Limmer, A. et al., CCR2 mediates homeostatic and inflammatory release of Gr1high monocytes from the bone marrow, but is dispensable for bladder infiltration in bacterial urinary tract infection. J. Immunol. 2008. 181: 55795586.
  • 11
    Serbina, N. V., Salazar-Mather, T. P., Biron, C. A., Kuziel, W. A. and Pamer, E. G., TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 2003. 19: 5970.
  • 12
    Robben, P. M., Laregina, M., Kuziel, W. A. and Sibley, L. D., Recruitment of Gr-1+ monocytes is essential for control of acute toxoplasmosis. J. Exp. Med. 2005. 201: 17611769.
  • 13
    Dunay, I. R., DaMatta, R. A., Fux, B., Presti, R., Greco, S., Colonna, M. and Sibley, L. D., Gr1+ inflammatory monoytes are required for mucosal resistance to the pathogen. Toxoplasma gondii Immunity 2008. 29: 306317.
  • 14
    Peters, W., Cyster, J. G., Mack, M., Schlondorff, D., Wolf, A. J., Ernst, J. D. and Charo, I. F., CCR2-dependent trafficking of F4/80dim macrophages and CD11cdim/intermediate dendritic cells is crucial for T cell recruitment to lungs infected with Mycobacterium tuberculosis. J. Immunol. 2004. 172: 76477653.
  • 15
    Del Rio, L., Bennouna, S., Salinas, J. and Denkers, E. Y., CXCR2 deficiency confers impaired neutrophil recruitment and increased susceptibility during Toxoplasma gondii infection. J. Immunol. 2001. 167: 65036509.
  • 16
    Kurihara, T., Warr, G., Loy, J. and Bravo, R., Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor. J. Exp. Med. 1997. 186: 17571762.
  • 17
    Rot, A. and von Andrian, U. H., Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu. Rev. Immunol. 2004. 22: 891928.
  • 18
    Jia, T., Serbina, N. V., Brandl, K., Zhong, M. X., Leiner, I. M., Charo, I. F. and Pamer, E. G., Additive roles for MCP-1 and MCP-3 in CCR2-mediated recruitment of inflammatory monocytes during Listeria monocytogenes infection. J. Immunol. 2008. 180: 68466853.
  • 19
    Fahy, O. L., Townley, S. L. and McColl, S. R., CXCL16 regulates cell-mediated immunity to Salmonella enterica serovar Enteritidis via promotion of γ-interferon production. Infect. Immun. 2006. 74: 68856894.
  • 20
    Fahy, O. L., Townley, S. L., Coates, N. J., Clark-Lewis, I. and McColl, S. R., Control of Salmonella dissemination in vivo by macrophage inflammatory protein (MIP)-3alpha/CCL20. Lab. Invest. 2004. 84: 15011511.
  • 21
    Depaolo, R. W., Lathan, R., Rollins, B. J. and Karpus, W. J., The chemokine CCL2 is required for control of murine gastric Salmonella enterica infection. Infect. Immun. 2005. 73: 65146522.
  • 22
    Rodriguez, N., Fend, F., Jennen, L., Schiemann, M., Wantia, N., Prazeres da Costa, C. U., Durr, S. et al., Polymorphonuclear neutrophils improve replication of Chlamydia pneumoniae in vivo upon MyD88-dependent attraction. J. Immunol. 2005. 174: 48364844.
  • 23
    Sukhumavasi, W., Egan, C. E., Warren, A. L., Taylor, G. A., Fox, B. A., Bzik, D. J. and Denkers, E. Y., TLR adaptor MyD88 is essential for pathogen control during oral Toxoplasma gondii infection but not adaptive immunity induced by a vaccine strain of the parasite. J. Immunol. 2008. 181: 34643473.
  • 24
    Janatpour, M. J., Hudak, S., Sathe, M., Sedgwick, J. D. and McEvoy, L. M., Tumor necrosis factor-dependent segmental control of MIG expression by high endothelial venules in inflamed lymph nodes regulates monocyte recruitment. J. Exp. Med. 2001. 194: 13751384.
  • 25
    Iwasaki, A. and Kelsall, B. L., Localization of distinct Peyer's patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (MIP)-3α, MIP-3β, and secondary lymphoid organ chemokine. J. Exp. Med. 2000. 191: 13811394.
  • 26
    Lagasse, E. and Weissman, I. L., Flow cytometric identification of murine neutrophils and monocytes. J. Immunol. Methods 1996. 197: 139150.
  • 27
    Henderson, R. B., Hobbs, J. A., Mathies, M. and Hogg, N., Rapid recruitment of inflammatory monocytes is independent of neutrophil migration. Blood 2003. 102: 328335.
  • 28
    Daley, J. M., Thomay, A. A., Connolly, M. D., Reichner, J. S. and Albina, J. E., Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice. J. Leukoc. Biol. 2008. 83: 6470.
  • 29
    Vazquez-Torres, A., Vallance, B. A., Bergman, M. A., Finlay, B. B., Cookson, B. T., Jones-Carson, J. and Fang, F. C., Toll-like receptor 4 dependence of innate and adaptive immunity to Salmonella: importance of the Kupffer cell network. J. Immunol. 2004. 172: 62026208.
  • 30
    Weiss, D. S., Raupach, B., Takeda, K., Akira, S. and Zychlinsky, A., Toll-like receptors are temporally involved in host defense. J. Immunol. 2004. 172: 44634469.
  • 31
    Totemeyer, S., Foster, N., Kaiser, P., Maskell, D. J. and Bryant, C. E., Toll-like receptor expression in C3H/HeN and C3H/HeJ mice during Salmonella enterica serovar Typhimurium infection. Infect. Immun. 2003. 71: 66536657.
  • 32
    Akira, S., Uematsu, S. and Takeuchi, O., Pathogen recognition and innate immunity. Cell 2006. 124: 783801.
  • 33
    Chabot, S., Wagner, J. S., Farrant, S. and Neutra, M. R., TLRs regulate the gatekeeping functions of the intestinal follicle-associated epithelium. J. Immunol. 2006. 176: 42754283.
  • 34
    Mowat, A. M., Anatomical basis of tolerance and immunity to intestinal antigens. Nat. Rev. Immunol. 2003. 3: 331341.
  • 35
    Pelus, L. M., Horowitz, D., Cooper, S. C. and King, A. G., Peripheral blood stem cell mobilization. A role for CXC chemokines. Crit. Rev. Oncol. Hematol. 2002. 43: 257275.
  • 36
    Luster, A. D., The role of chemokines in linking innate and adaptive immunity. Curr. Opin. Immunol. 2002. 14: 129135.
  • 37
    Kirby, A. C., Yrlid, U. and Wick, M. J., The innate immune response differs in primary and secondary Salmonella infection. J. Immunol. 2002. 169: 44504459.
  • 38
    Kang, S. J., Liang, H. E., Reizis, B. and Locksley, R. M., Regulation of hierarchical clustering and activation of innate immune cells by dendritic cells. Immunity 2008. 29: 819833.
  • 39
    Saunders, B. M. and Britton, W. J., Life and death in the granuloma: immunopathology of tuberculosis. Immunol. Cell Biol. 2007. 85: 103111.
  • 40
    Rotta, G., Matteoli, G., Mazzini, E., Nuciforo, P., Colombo, M. P. and Rescigno, M., Contrasting roles of SPARC-related granuloma in bacterial containment and in the induction of anti-Salmonella typhimurium immunity. J. Exp. Med. 2008. 205: 657667.
  • 41
    Ulrichs, T. and Kaufmann, S. H., New insights into the function of granulomas in human tuberculosis. J. Pathol. 2006. 208: 261269.
  • 42
    Lembo, A., Kalis, C., Kirschning, C. J., Mitolo, V., Jirillo, E., Wagner, H., Galanos, C. and Freudenberg, M. A., Differential contribution of Toll-like receptors 4 and 2 to the cytokine response to Salmonella enterica serovar Typhimurium and Staphylococcus aureus in mice. Infect. Immun. 2003. 71: 60586062.
  • 43
    Eaves-Pyles, T., Murthy, K., Liaudet, L., Virag, L., Ross, G., Soriano, F. G., Szabo, C. and Salzman, A. L., Flagellin, a novel mediator of Salmonella-induced epithelial activation and systemic inflammation: IκBα degradation, induction of nitric oxide synthase, induction of proinflammatory mediators, and cardiovascular dysfunction. J. Immunol. 2001. 166: 12481260.
  • 44
    Vijay-Kumar, M., Aitken, J. D., Kumar, A., Neish, A. S., Uematsu, S., Akira, S. and Gewirtz, A. T., Toll-like receptor 5-deficient mice have dysregulated intestinal gene expression and nonspecific resistance to Salmonella-induced typhoid-like disease. Infect. Immun. 2008. 76: 12761281.
  • 45
    Ferrari, D., Pizzirani, C., Adinolfi, E., Lemoli, R. M., Curti, A., Idzko, M., Panther, E. and Di Virgilio, F., The P2X7 receptor: a key player in IL-1 processing and release. J. Immunol. 2006. 176: 38773883.
  • 46
    Kawai, T., Takeuchi, O., Fujita, T., Inoue, J., Muhlradt, P. F., Sato, S., Hoshino, K. and Akira, S., Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J. Immunol. 2001. 167: 58875894.
  • 47
    Bergqvist, P., Gardby, E., Stensson, A., Bemark, M. and Lycke, N. Y., Gut IgA class switch recombination in the absence of CD40 does not occur in the lamina propria and is independent of germinal centers. J. Immunol. 2006. 177: 77727783.