• 1
    WHO, WHO Report - Global tuberculosis control. World Health Organization, Geneva 2008.
  • 2
    Ulrichs, T. and Kaufmann, S. H., New insights into the function of granulomas in human tuberculosis. J. Pathol. 2006. 208: 261269.
  • 3
    Shim, T. S., Turner, O. C. and Orme, I. M., Toll-like receptor 4 plays no role in susceptibility of mice to Mycobacterium tuberculosis infection. Tuberculosis (Edinb.) 2003. 83: 367371.
  • 4
    Holscher, C., Reiling, N., Schaible, U. E., Holscher, A., Bathmann, C., Korbel, D., Lenz, I. et al., Containment of aerogenic Mycobacterium tuberculosis infection in mice does not require MyD88 adaptor function for TLR2, -4 and -9. Eur. J. Immunol. 2008. 38: 680694.
  • 5
    Shi, S., Blumenthal, A., Hickey, C. M., Gandotra, S., Levy, D. and Ehrt, S., Expression of many immunologically important genes in Mycobacterium tuberculosis-infected macrophages is independent of both TLR2 and TLR4 but dependent on IFN-alphabeta receptor and STAT1. J. Immunol. 2005. 175: 33183328.
  • 6
    Sugawara, I., Yamada, H., Li, C., Mizuno, S., Takeuchi, O. and Akira, S., Mycobacterial infection in TLR2 and TLR6 knockout mice. Microbiol. Immunol. 2003. 47: 327336.
  • 7
    Drennan, M. B., Nicolle, D., Quesniaux, V. J., Jacobs, M., Allie, N., Mpagi, J., Fremond, C. et al., Toll-like receptor 2-deficient mice succumb to Mycobacterium tuberculosis infection. Am. J. Pathol. 2004. 164: 4957.
  • 8
    Bafica, A., Scanga, C. A., Feng, C. G., Leifer, C., Cheever, A. and Sher, A., TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J. Exp. Med. 2005. 202: 17151724.
  • 9
    Abel, B., Thieblemont, N., Quesniaux, V. J., Brown, N., Mpagi, J., Miyake, K., Bihl, F. and Ryffel, B., Toll-like receptor 4 expression is required to control chronic Mycobacterium tuberculosis infection in mice. J. Immunol. 2002. 169: 31553162.
  • 10
    O'Neill, L. A. and Bowie, A. G., The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol. 2007. 7: 353364.
  • 11
    Fremond, C. M., Yeremeev, V., Nicolle, D. M., Jacobs, M., Quesniaux, V. F. and Ryffel, B., Fatal Mycobacterium tuberculosis infection despite adaptive immune response in the absence of MyD88. J. Clin. Invest. 2004. 114: 17901799.
  • 12
    Fremond, C. M., Togbe, D., Doz, E., Rose, S., Vasseur, V., Maillet, I., Jacobs, M. et al., IL-1 receptor-mediated signal is an essential component of MyD88-dependent innate response to Mycobacterium tuberculosis infection. J. Immunol. 2007. 179: 11781189.
  • 13
    Roach, D. R., Briscoe, H., Saunders, B., France, M. P., Riminton, S. and Britton, W. J., Secreted lymphotoxin-alpha is essential for the control of an intracellular bacterial infection. J. Exp. Med. 2001. 193: 239246.
  • 14
    Kahnert, A., Seiler, P., Stein, M., Bandermann, S., Hahnke, K., Mollenkopf, H. and Kaufmann, S. H., Alternative activation deprives macrophages of a coordinated defense program to Mycobacterium tuberculosis. Eur. J. Immunol. 2006. 36: 631647.
  • 15
    Flesch, I. E. and Kaufmann, S. H., Activation of tuberculostatic macrophage functions by gamma interferon, interleukin-4, and tumor necrosis factor. Infect. Immun. 1990. 58: 26752677.
  • 16
    Fulton, S. A., Reba, S. M., Martin, T. D. and Boom, W. H., Neutrophil-mediated mycobacteriocidal immunity in the lung during Mycobacterium bovis BCG infection in C57BL/6 mice. Infect. Immun. 2002. 70: 53225327.
  • 17
    Seiler, P., Aichele, P., Raupach, B., Odermatt, B., Steinhoff, U. and Kaufmann, S. H., Rapid neutrophil response controls fast-replicating intracellular bacteria but not slow-replicating Mycobacterium tuberculosis. J. Infect. Dis. 2000. 181: 671680.
  • 18
    Reddy, P., Interleukin-18: recent advances. Curr. Opin. Hematol. 2004. 11: 405410.
  • 19
    Nakanishi, K., Yoshimoto, T., Tsutsui, H. and Okamura, H., Interleukin-18 regulates both Th1 and Th2 responses. Annu. Rev. Immunol. 2001. 19: 423474.
  • 20
    Maxwell, J. R., Yadav, R., Rossi, R. J., Ruby, C. E., Weinberg, A. D., Aguila, H. L. and Vella, A. T., IL-18 bridges innate and adaptive immunity through IFN-gamma and the CD134 pathway. J. Immunol. 2006. 177: 234245.
  • 21
    Takeda, K., Tsutsui, H., Yoshimoto, T., Adachi, O., Yoshida, N., Kishimoto, T., Okamura, H. et al., Defective NK cell activity and Th1 response in IL-18-deficient mice. Immunity 1998. 8: 383390.
  • 22
    Sugawara, I., Yamada, H., Kaneko, H., Mizuno, S., Takeda, K. and Akira, S., Role of interleukin-18 (IL-18) in mycobacterial infection in IL-18-gene-disrupted mice. Infect. Immun. 1999. 67: 25852589.
  • 23
    Kinjo, Y., Kawakami, K., Uezu, K., Yara, S., Miyagi, K., Koguchi, Y., Hoshino, T. et al., Contribution of IL-18 to Th1 response and host defense against infection by Mycobacterium tuberculosis: a comparative study with IL-12p40. J. Immunol. 2002. 169: 323329.
  • 24
    Sugawara, I., Yamada, H., Mizuno, S., Takeda, K. and Akira, S., Mycobacterial infection in MyD88-deficient mice. Microbiol. Immunol. 2003. 47: 841847.
  • 25
    Xu, D., Trajkovic, V., Hunter, D., Leung, B. P., Schulz, K., Gracie, J. A., McInnes, I. B. and Liew, F. Y., IL-18 induces the differentiation of Th1 or Th2 cells depending upon cytokine milieu and genetic background. Eur. J. Immunol. 2000. 30: 31473156.
  • 26
    Wei, X. Q., Niedbala, W., Xu, D., Luo, Z. X., Pollock, K. G. and Brewer, J. M., Host genetic background determines whether IL-18 deficiency results in increased susceptibility or resistance to murine Leishmania major infection. Immunol. Lett. 2004. 94: 3537.
  • 27
    Chan, E. D., Chan, J. and Schluger, N. W., What is the role of nitric oxide in murine and human host defense against tuberculosis?Current knowledge. Am. J. Respir. Cell Mol. Biol. 2001. 25: 606612.
  • 28
    Munder, M., Mollinedo, F., Calafat, J., Canchado, J., Gil-Lamaignere, C., Fuentes, J. M., Luckner, C. et al., Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity. Blood 2005. 105: 25492556.
  • 29
    Munder, M., Schneider, H., Luckner, C., Giese, T., Langhans, C. D., Fuentes, J. M., Kropf, P. et al., Suppression of T-cell functions by human granulocyte arginase. Blood 2006. 108: 16271634.
  • 30
    Miyamoto, M., Prause, O., Sjostrand, M., Laan, M., Lotvall, J. and Linden, A., Endogenous IL-17 as a mediator of neutrophil recruitment caused by endotoxin exposure in mouse airways. J. Immunol. 2003. 170: 46654672.
  • 31
    Laan, M., Cui, Z. H., Hoshino, H., Lotvall, J., Sjostrand, M., Gruenert, D. C., Skoogh, B. E. and Linden, A., Neutrophil recruitment by human IL-17 via C-X-C chemokine release in the airways. J. Immunol. 1999. 162: 23472352.
  • 32
    Rollins, B. J., Chemokines. Blood 1997. 90: 909928.
  • 33
    Korbel, D. S., Schneider, B. E. and Schaible, U. E., Innate immunity in tuberculosis: myths and truth. Microbes Infect. 2008. 10: 9951004.
  • 34
    Feng, C. G., Kaviratne, M., Rothfuchs, A. G., Cheever, A., Hieny, S., Young, H. A., Wynn, T. A. and Sher, A., NK cell-derived IFN-gamma differentially regulates innate resistance and neutrophil response in T cell-deficient hosts infected with Mycobacterium tuberculosis. J. Immunol. 2006. 177: 70867093.
  • 35
    Bernard, A., Kasten, M., Meier, C., Manning, E., Freeman, S., Adams, W., Chang, P. et al., Red blood cell arginase suppresses Jurkat (T cell) proliferation by depleting arginine. Surgery 2008. 143: 286291.
  • 36
    Rodriguez, P. C., Zea, A. H., DeSalvo, J., Culotta, K. S., Zabaleta, J., Quiceno, D. G., Ochoa, J. B. and Ochoa, A. C., L-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes. J. Immunol. 2003. 171: 12321239.
  • 37
    Shi, S., Nathan, C., Schnappinger, D., Drenkow, J., Fuortes, M., Block, E., Ding, A. et al., MyD88 primes macrophages for full-scale activation by interferon-gamma yet mediates few responses to Mycobacterium tuberculosis. J. Exp. Med. 2003. 198: 987997.
  • 38
    Han, J., MyD88 beyond Toll. Nat. Immunol. 2006. 7: 370371.
  • 39
    Sun, D. and Ding, A., MyD88-mediated stabilization of interferon-gamma-induced cytokine and chemokine mRNA. Nat. Immunol. 2006. 7: 375381.
  • 40
    Shornick, L. P., De Togni, P., Mariathasan, S., Goellner, J., Strauss-Schoenberger, J., Karr, R. W., Ferguson, T. A. and Chaplin, D. D., Mice deficient in IL-1beta manifest impaired contact hypersensitivity to trinitrochlorobenzone. J. Exp. Med. 1996. 183: 14271436.
  • 41
    Raupach, B., Peuschel, S. K., Monack, D. M. and Zychlinsky, A., Caspase-1-mediated activation of interleukin-1beta (IL-1beta) and IL-18 contributes to innate immune defenses against Salmonella enterica serovar Typhimurium infection. Infect. Immun. 2006. 74: 49224926.
  • 42
    Weiss, D. S., Raupach, B., Takeda, K., Akira, S. and Zychlinsky, A., Toll-like receptors are temporally involved in host defense. J. Immunol. 2004. 172: 44634469.
  • 43
    Bancroft, G. J., Collins, H. L., Sigola, L. B. and Cross, C. E., Modulation of murine macrophage behavior in vivo and in vitro. Methods Cell Biol. 1994. 45: 129146.
  • 44
    Mittrucker, H. W., Steinhoff, U., Kohler, A., Krause, M., Lazar, D., Mex, P., Miekley, D. and Kaufmann, S. H., Poor correlation between BCG vaccination-induced T cell responses and protection against tuberculosis. Proc. Natl. Acad. Sci. USA 2007. 104: 1243412439.
  • 45
    Irwin, S. M., Izzo, A. A., Dow, S. W., Skeiky, Y. A., Reed, S. G., Alderson, M. R. and Orme, I. M., Tracking antigen-specific CD8 T lymphocytes in the lungs of mice vaccinated with the Mtb72F polyprotein. Infect. Immun. 2005. 73: 58095816.
  • 46
    D'Souza, S., Rosseels, V., Romano, M., Tanghe, A., Denis, O., Jurion, F., Castiglione, N. et al., Mapping of murine Th1 helper T-Cell epitopes of mycolyl transferases Ag85A, Ag85B, and Ag85C from Mycobacterium tuberculosis. Infect. Immun. 2003. 71: 483493.
  • 47
    Frentsch, M., Arbach, O., Kirchhoff, D., Moewes, B., Worm, M., Rothe, M., Scheffold, A. and Thiel, A., Direct access to CD4+ T cells specific for defined antigens according to CD154 expression. Nat. Med. 2005. 11: 11181124.