• 1
    Backonja, M. M., Defining neuropathic pain. Anesth. Analg. 2003. 97: 785790.
  • 2
    Tsuda, M., Inoue, K. and Salter, M. W., Neuropathic pain and spinal microglia: a big problem from molecules in “small” glia. Trends Neurosci. 2005. 28: 101107.
  • 3
    DeLeo, J. A., Tanga, F. Y. and Tawfik, V. L., Neuroimmune activation and neuroinflammation in chronic pain and opioid tolerance/hyperalgesia. Neuroscientist 2004. 10: 4052.
  • 4
    Herzberg, U. and Sagen, J., Peripheral nerve exposure to HIV viral envelope protein gp120 induces neuropathic pain and spinal gliosis. J. Neuroimmunol. 2001. 116: 2939.
  • 5
    Grewal, I. S. and Flavell, R. A., CD40 and CD154 in cell-mediated immunity. Annu. Rev. Immunol. 1998. 16: 111135.
  • 6
    Quezada, S. A., Jarvinen, L. Z., Lind, E. F. and Noelle, R. J., CD40/CD154 interactions at the interface of tolerance and immunity. Annu. Rev. Immunol. 2004. 22: 307328.
  • 7
    Togo, T., Akiyama, H., Kondo, H., Ikeda, K., Kato, M., Iseki, E. and Kosaka, K., Expression of CD40 in the brain of Alzheimer's disease and other neurological diseases. Brain Res. 2000. 885: 117121.
  • 8
    Becher, B., Durell, B. G., Miga, A. V., Hickey, W. F. and Noelle, R. J., The clinical course of experimental autoimmune encephalomyelitis and inflammation is controlled by the expression of CD40 within the central nervous system. J. Exp. Med. 2001. 193: 967974.
  • 9
    Benveniste, E. N., Nguyen, V. T. and O'Keefe, G. M., Immunological aspects of microglia: relevance to Alzheimer's disease. Neurochem. Int. 2001. 39: 381391.
  • 10
    D'Aversa, T. G., Weidenheim, K. M. and Berman, J. W., CD40-CD40L interactions induce chemokine expression by human microglia: implications for human immunodeficiency virus encephalitis and multiple sclerosis. Am. J. Pathol. 2002. 160: 559567.
  • 11
    Okuno, T., Nakatsuji, Y., Kumanogoh, A., Koguchi, K., Moriya, M., Fujimura, H., Kikutani, H. and Sakoda, S., Induction of cyclooxygenase-2 in reactive glial cells by the CD40 pathway: relevance to amyotrophic lateral sclerosis. J. Neurochem. 2004. 91: 404412.
  • 12
    Tan, J., Town, T. and Mullan, M., CD40-CD40L interaction in Alzheimer's disease. Curr. Opin. Pharmacol. 2002. 2: 445451.
  • 13
    Havenith, C. E., Askew, D. and Walker, W. S., Mouse resident microglia: isolation and characterization of immunoregulatory properties with naive CD4+ and CD8+ T-cells. Glia 1998. 22: 348359.
  • 14
    Carson, M. J., Reilly, C. R., Sutcliffe, J. G. and Lo, D., Mature microglia resemble immature antigen-presenting cells. Glia 1998. 22: 7285.
  • 15
    Matyszak, M. K., Denis-Donini, S., Citterio, S., Longhi, R., Granucci, F. and Ricciardi-Castagnoli, P., Microglia induce myelin basic protein-specific T-cell anergy or T-cell activation, according to their state of activation. Eur. J. Immunol. 1999. 29: 30633076.
  • 16
    Olson, J. K., Girvin, A. M. and Miller, S. D., Direct activation of innate and antigen-presenting functions of microglia following infection with Theiler's virus. J. Virol. 2001. 75: 97809789.
  • 17
    Dalpke, A. H., Schafer, M. K., Frey, M., Zimmermann, S., Tebbe, J., Weihe, E. and Heeg, K., Immunostimulatory CpG-DNA activates murine microglia. J. Immunol. 2002. 168: 48544863.
  • 18
    Ponomarev, E. D., Shriver, L. P., Maresz, K. and Dittel, B. N., Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J. Neurosci. Res. 2005. 81: 374389.
  • 19
    Tan, J., Town, T., Paris, D., Mori, T., Suo, Z., Crawford, F., Mattson, M. P. et al., Microglial activation resulting from CD40-CD40L interaction after beta-amyloid stimulation. Science 1999. 286: 23522355.
  • 20
    Tan, J., Town, T., Paris, D., Placzek, A., Parker, T., Crawford, F., Yu, H. et al., Activation of microglial cells by the CD40 pathway: relevance to multiple sclerosis. J. Neuroimmunol. 1999. 97: 7785.
  • 21
    Becher, B., Blain, M. and Antel, J. P., CD40 engagement stimulates IL-12 p70 production by human microglial cells: basis for Th1 polarization in the CNS. J. Neuroimmunol. 2000. 102: 4450.
  • 22
    Chabot, S., Williams, G., Hamilton, M., Sutherland, G. and Yong, V. W., Mechanisms of IL-10 production in human microglia-T-cell interaction. J. Immunol. 1999. 162: 68196828.
  • 23
    Ait-Ghezala, G., Mathura, V. S., Laporte, V., Quadros, A., Paris, D., Patel, N., Volmar, C. H. et al., Genomic regulation after CD40 stimulation in microglia: relevance to Alzheimer's disease. Brain Res. Mol. Brain Res. 2005. 140: 7385.
  • 24
    Cao, L. and DeLeo, J. A., CNS-infiltrating CD4+ T lymphocytes contribute to murine spinal nerve transection-induced neuropathic pain. Eur. J. Immunol. 2008. 38: 448458.
  • 25
    Cao, L., Tanga, F. Y. and Deleo, J. A., The contributing role of CD14 in toll-like receptor 4 dependent neuropathic pain. Neuroscience 2009. 158: 896903.
  • 26
    Tan, J., Town, T., Crawford, F., Mori, T., DelleDonne, A., Crescentini, R., Obregon, D. et al., Role of CD40 ligand in amyloidosis in transgenic Alzheimer's mice. Nat. Neurosci. 2002. 5: 12881293.
  • 27
    Mildner, A., Schmidt, H., Nitsche, M., Merkler, D., Hanisch, U. K., Mack, M., Heikenwalder, M. et al., Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat. Neurosci. 2007. 10: 15441553.
  • 28
    Priller, J., Flugel, A., Wehner, T., Boentert, M., Haas, C. A., Prinz, M., Fernandez-Klett, F. et al., Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat. Med. 2001. 7: 13561361.
  • 29
    Monaco, S., Gehrmann, J., Raivich, G. and Kreutzberg, G. W., MHC-positive, ramified macrophages in the normal and injured rat peripheral nervous system. J. Neurocytol. 1992. 21: 623634.
  • 30
    Jana, M., Liu, X., Koka, S., Ghosh, S., Petro, T. M. and Pahan, K., Ligation of CD40 stimulates the induction of nitric-oxide synthase in microglial cells. J. Biol. Chem. 2001. 276: 4452744533.
  • 31
    Moalem, G. and Tracey, D. J., Immune and inflammatory mechanisms in neuropathic pain. Brain Res. Rev. 2006. 51: 240264.
  • 32
    Abbadie, C., Lindia, J. A., Cumiskey, A. M., Peterson, L. B., Mudgett, J. S., Bayne, E. K., DeMartino, J. A. et al., Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2. Proc. Natl. Acad. Sci. USA 2003. 100: 79477952.
  • 33
    Levy, D. and Zochodne, D. W., NO pain: potential roles of nitric oxide in neuropathic pain. Pain Pract. 2004. 4: 1118.
  • 34
    Robertson, B., Xu, X. J., Hao, J. X., Wiesenfeld-Hallin, Z., Mhlanga, J., Grant, G. and Kristensson, K., Interferon-gamma receptors in nociceptive pathways: role in neuropathic pain-related behaviour. Neuroreport 1997. 8: 13111316.
  • 35
    Arruda, J. L., Sweitzer, S., Rutkowski, M. D. and DeLeo, J. A., Intrathecal anti-IL-6 antibody and IgG attenuates peripheral nerve injury-induced mechanical allodynia in the rat: possible immune modulation in neuropathic pain. Brain Res. 2000. 879: 216225.
  • 36
    Moalem, G., Xu, K. and Yu, L., T lymphocytes play a role in neuropathic pain following peripheral nerve injury in rats. Neuroscience 2004. 129: 767777.
  • 37
    Chaplan, S. R., Bach, F. W., Pogrel, J. W., Chung, J. M. and Yaksh, T. L., Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci. Methods 1994. 53: 5563.
  • 38
    Bryant, C. D., Zhang, N. N., Sokoloff, G., Fanselow, M. S., Ennes, H. S., Palmer, A. A. and McRoberts, J. A., Behavioral differences among C57BL/6 substrains: implications for transgenic and knockout studies. J. Neurogenet. 2008. 22: 315331.
  • 39
    Hickey, W. F., Vass, K. and Lassmann, H., Bone marrow-derived elements in the central nervous system: an immunohistochemical and ultrastructural survey of rat chimeras. J. Neuropathol. Exp. Neurol. 1992. 51: 246256.
  • 40
    Sweitzer, S. M., Hickey, W. F., Rutkowski, M. D., Pahl, J. L. and DeLeo, J. A., Focal peripheral nerve injury induces leukocyte trafficking into the central nervous system: potential relationship to neuropathic pain. Pain 2002. 100: 163170.