SEARCH

SEARCH BY CITATION

References

  • 1
    Gabrilovich, D. I., Bronte, V., Chen, S. H., Colombo, M. P., Ochoa, A., Ostrand-Rosenberg, S. and Schreiber, H., The terminology issue for myeloid-derived suppressor cells. Cancer Res. 2007. 67: 425; author reply 426.
  • 2
    Bronte, V., Wang, M., Overwijk, W. W., Surman, D. R., Pericle, F., Rosenberg, S. A. and Restifo, N. P., Apoptotic death of CD8+ T lymphocytes after immunization: induction of a suppressive population of Mac-1+/Gr-1+ cells. J. Immunol. 1998. 161: 53135320.
  • 3
    Bronte, V., Chappell, D. B., Apolloni, E., Cabrelle, A., Wang, M., Hwu, P. and Restifo, N. P., Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. J. Immunol. 1999. 162: 57285737.
  • 4
    Gallina, G., Dolcetti, L., Serafini, P., De Santo, C., Marigo, I., Colombo, M. P., Basso, G. et al., Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J. Clin. Invest. 2006. 116: 27772790.
  • 5
    Huang, B., Pan, P. Y., Li, Q., Sato, A. I., Levy, D. E., Bromberg, J., Divino, C. M. and Chen, S. H., Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 2006. 66: 11231131.
  • 6
    Movahedi, K., Guilliams, M., Van den Bossche, J., Van den Bergh, R., Gysemans, C., Beschin, A., De Baetselier, P. and Van Ginderachter, J. A., Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 2008. 111: 42334244.
  • 7
    Youn, J. I., Nagaraj, S., Collazo, M. and Gabrilovich, D. I., Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J. Immunol. 2008. 181: 57915802.
  • 8
    Serafini, P., De Santo, C., Marigo, I., Cingarlini, S., Dolcetti, L., Gallina, G., Zanovello, P. and Bronte, V., Derangement of immune responses by myeloid suppressor cells. Cancer Immunol. Immunother. 2004. 53: 6472.
  • 9
    Shojaei, F., Wu, X., Qu, X., Kowanetz, M., Yu, L., Tan, M., Meng, Y. G. and Ferrara, N., G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc. Natl. Acad. Sci USA 2009. 106: 67426747.
  • 10
    Shojaei, F., Wu, X., Zhong, C., Yu, L., Liang, X. H., Yao, J., Blanchard, D. et al., Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 2007. 450: 825831.
  • 11
    Schlueter, A. J., Malek, T. R., Hostetler, C. N., Smith, P. A., deVries, P. and Waldschmidt, T. J., Distribution of Ly-6C on lymphocyte subsets: I. Influence of allotype on T lymphocyte expression. J. Immunol. 1997. 158: 42114222.
  • 12
    Fleming, T. J., Fleming, M. L. and Malek, T. R., Selective expression of Ly-6G on myeloid lineage cells in mouse bone marrow. RB6-8C5 mAb to granulocyte-differentiation antigen (Gr-1) detects members of the Ly-6 family. J. Immunol. 1993. 151: 23992408.
  • 13
    Nagendra, S. and Schlueter, A. J., Absence of cross-reactivity between murine Ly-6C and Ly-6G. Cytometry A 2004. 58: 195200.
  • 14
    Auffray, C., Sieweke, M. H. and Geissmann, F., Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu. Rev. Immunol. 2009. 27: 669692.
  • 15
    Norian, L. A., Rodriguez, P. C., O'Mara, L. A., Zabaleta, J., Ochoa, A. C., Cella, M. and Allen, P. M., Tumor-infiltrating regulatory dendritic cells inhibit CD8+ T cell function via L-arginine metabolism. Cancer Res. 2009. 69: 30863094.
  • 16
    De Palma, M., Venneri, M. A., Galli, R., Sergi Sergi, L., Politi, L. S., Sampaolesi, M. and Naldini, L., Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell. 2005. 8: 211226.
  • 17
    Nagaraj, S., Gupta, K., Pisarev, V., Kinarsky, L., Sherman, S., Kang, L., Herber, D. L. et al., Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat. Med. 2007. 13: 828835.
  • 18
    Ueda, Y., Kondo, M. and Kelsoe, G., Inflammation and the reciprocal production of granulocytes and lymphocytes in bone marrow. J. Exp. Med. 2005. 201: 17711780.
  • 19
    Gabrilovich, D. I. and Nagaraj, S., Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 2009. 9: 162174.
  • 20
    Bronte, V., Apolloni, E., Cabrelle, A., Ronca, R., Serafini, P., Zamboni, P., Restifo, N. P. and Zanovello, P., Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood. 2000. 96: 38383846.
  • 21
    Akashi, K., Traver, D., Miyamoto, T. and Weissman, I. L., A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 2000. 404: 193197.
  • 22
    Kondo, M., Weissman, I. L. and Akashi, K., Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 1997. 91: 661672.
  • 23
    Mandruzzato, S., Solito, S., Falisi, E., Francescato, S., Chiarion-Sileni, V., Mocellin, S., Zanon, A. et al., IL4Ralpha+ myeloid-derived suppressor cell expansion in cancer patients. J. Immunol. 2009. 182: 65626568.
  • 24
    Bronte, V., Serafini, P., De Santo, C., Marigo, I., Tosello, V., Mazzoni, A., Segal, D. M. et al., IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J. Immunol. 2003. 170: 270278.
  • 25
    Bronte, V., Serafini, P., Mazzoni, A., Segal, D. M. and Zanovello, P., L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol. 2003. 24: 302306.
  • 26
    Sinha, P., Clements, V. K. and Ostrand-Rosenberg, S., Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. J. Immunol. 2005. 174: 636645.
  • 27
    Greifenberg, V., Ribechini, E., Rossner, S. and Lutz, M. B., Myeloid-derived suppressor cell activation by combined LPS and IFN-gamma treatment impairs DC development. Eur. J. Immunol. 2009. 39: 28652876.
  • 28
    Bronte, V., Myeloid-derived suppressor cells in inflammation: Uncovering cell subsets with enhanced immunosuppressive functions. Eur. J. Immunol. 2009. 39: 26702672.
  • 29
    Dolcetti, L., Marigo, I., Mantelli, B., Peranzoni, E., Zanovello, P. and Bronte, V., Myeloid-derived suppressor cell role in tumor-related inflammation. Cancer Lett. 2008. 267: 216225.
  • 30
    Marigo, I., Dolcetti, L., Serafini, P., Zanovello, P. and Bronte, V., Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol. Rev. 2008. 222: 162179.
  • 31
    Shojaei, F. and Ferrara, N., Refractoriness to antivascular endothelial growth factor treatment: role of myeloid cells. Cancer. Res. 2008. 68: 55015504.
  • 32
    Rutella, S., Zavala, F., Danese, S., Kared, H. and Leone, G., Granulocyte colony-stimulating factor: a novel mediator of T cell tolerance. J. Immunol. 2005. 175: 70857091.
  • 33
    Rossner, S., Voigtlander, C., Wiethe, C., Hanig, J., Seifarth, C. and Lutz, M. B., Myeloid dendritic cell precursors generated from bone marrow suppress T cell responses via cell contact and nitric oxide production in vitro. Eur. J. Immunol. 2005. 35: 35333544.
  • 34
    Overwijk, W. W., Theoret, M. R., Finkelstein, S. E., Surman, D. R., de Jong, L. A., Vyth-Dreese, F. A., Dellemijn, T. A. et al., Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J. Exp. Med. 2003. 198: 569580.