SEARCH

SEARCH BY CITATION

References

  • 1
    Anthony, R. M., Rutitzky, L. I., Urban, J. F., Jr., Stadecker, M. J., and Gause, W. C., Protective immune mechanisms in helminth infection. Nat. Rev. Immunol. 2007. 7: 975987.
  • 2
    Maizels, R. M. and Yazdanbakhsh, M., Immune regulation by helminth parasites: cellular and molecular mechanisms. Nat. Rev. Immunol. 2003. 3: 733744.
  • 3
    Maizels, R. M., Balic, A., Gomez-Escobar, N., Nair, M., Taylor, M. D. and Allen, J. E., Helminth parasites – masters of regulation. Immunol. Rev. 2004. 201: 89116.
  • 4
    Perrigoue, J. G., Marshall, F. A. and Artis, D., On the hunt for helminths: innate immune cells in the recognition and response to helminth parasites. Cell Microbiol. 2008. 10: 17571764.
  • 5
    Carvalho, L., Sun, J., Kane, C., Marshall, F., Krawczyk, C. and Pearce, E. J., Review series on helminths, immune modulation and the hygiene hypothesis: mechanisms underlying helminth modulation of dendritic cell function. Immunology 2009. 126: 2834.
  • 6
    Akira, S., Uematsu, S. and Takeuchi, O., Pathogen recognition and innate immunity. Cell 2006. 124: 783801.
  • 7
    Goodridge, H. S., Marshall, F. A., Else, K. J., Houston, K. M., Egan, C., Al Riyami, L., Liew, F. Y. et al., Immunomodulation via novel use of TLR4 by the filarial nematode phosphorylcholine-containing secreted product, ES-62. J. Immunol. 2005. 174: 284293.
  • 8
    Goodridge, H. S., McGuiness, S., Houston, K. M., Egan, C. A., Al-Riyami, L., Alcocer, M. J., Harnett, M. M. and Harnett, W., Phosphorylcholine mimics the effects of ES-62 on macrophages and dendritic cells. Parasite Immunol. 2007. 29: 127137.
  • 9
    Thomas, P. G., Carter, M. R., Atochina, O., Da'Dara, A. A., Piskorska, D., McGuire, E. and Harn, D. A., Maturation of dendritic cell 2 phenotype by a helminth glycan uses a Toll-like receptor 4-dependent mechanism. J. Immunol. 2003. 171: 58375841.
  • 10
    Kane, C. M., Jung, E. and Pearce, E. J., Schistosoma mansoni egg antigen-mediated modulation of Toll-like receptor (TLR)-induced activation occurs independently of TLR2, TLR4, and MyD88. Infect. Immun. 2008. 76: 57545759.
  • 11
    van Riet, E., Everts, B., Retra, K., Phylipsen, M., van Hellemond, J. J., Tielens, A. G., van der, K. D. et al., Combined TLR2 and TLR4 ligation in the context of bacterial or helminth extracts in human monocyte derived dendritic cells: molecular correlates for Th1/Th2 polarization. BMC Immunol. 2009. 10: 9.
  • 12
    van der Kleij, D., Latz, E., Brouwers, J. F., Kruize, Y. C., Schmitz, M., Kurt-Jones, E. A., Espevik, T. et al., A novel host-parasite lipid cross-talk. Schistosomal lyso-phosphatidylserine acivates Toll-like receptor 2 and affects immune polarization. J. Biol. Chem. 2002. 277: 4812248129.
  • 13
    Vanhoutte, F., Breuilh, L., Fontaine, J., Zouain, C. S., Mallevaey, T., Vasseur, V., Capron, M. et al., Toll-like receptor (TLR)2 and TLR3 sensing is required for dendritic cell activation, but dispensable to control Schistosoma mansoni infection and pathology. Microbes Infect. 2007. 9: 16061613.
  • 14
    Layland, L. E., Rad, R., Wagner, H. and da Costa, C. U., Immunopathology in schistosomiasis is controlled by antigen-specific regulatory T cells primed in the presence of TLR2. Eur. J. Immunol. 2007. 37: 21742184.
  • 15
    Aksoy, E., Zouain, C. S., Vanhoutte, F., Fontaine, J., Pavelka, N., Thieblemont, N., Willems, F. et al., Double-stranded RNAs from the helminth parasite Schistosoma activate TLR3 in dendritic cells. J. Biol. Chem. 2005. 280: 277283.
  • 16
    van Liempt, E., Van Vliet, S. J., Engering, A., Garcia Vallejo, J. J., Bank, C. M., Sanchez-Hernandez, M. et al., Schistosoma mansoni soluble egg antigens are internalized by human dendritic cells through multiple C-type lectins and suppress TLR-induced dendritic cell activation. Mol. Immunol. 2007. 44: 26052615.
  • 17
    Van Die, I., Van Vliet, S. J., Nyame, A. K., Cummings, R. D., Bank, C. M., Appelmelk, B., Geijtenbeek, T. B. and Van Kooyk, Y., The dendritic cell-specific C-type lectin DC-SIGN is a receptor for Schistosoma mansoni egg antigens and recognizes the glycan antigen Lewis x. Glycobiology 2003. 13: 471478.
  • 18
    Meyer, S., van Liempt, E., Imberty, A., Van Kooyk, Y., Geyer, H., Geyer, R. and van, D. I., DC-SIGN mediates binding of dendritic cells to authentic pseudo-LewisY glycolipids of Schistosoma mansoni cercariae, the first parasite-specific ligand of DC-SIGN. J. Biol. Chem. 2005. 280: 3734937359.
  • 19
    Okano, M., Satoskar, A. R., Nishizaki, K., Abe, M. and Harn, D. A., Jr., Induction of Th2 responses and IgE is largely due to carbohydrates functioning as adjuvants on Schistosoma mansoni egg antigens. J. Immunol. 1999. 163: 67126717.
  • 20
    Okano, M., Satoskar, A. R., Nishizaki, K. and Harn, D. A. Jr., Lacto-N-fucopentaose III found on Schistosoma mansoni egg antigens functions as adjuvant for proteins by inducing Th2-type response. J. Immunol. 2001. 167: 442450.
  • 21
    Schabussova, I., Amer, H., van, D. I., Kosma, P. and Maizels, R. M., O-methylated glycans from Toxocara are specific targets for antibody binding in human and animal infections. Int. J. Parasitol. 2007. 37: 97109.
  • 22
    Tawill, S., Le, G. L., Ali, F., Blaxter, M. and Allen, J. E., Both free-living and parasitic nematodes induce a characteristic Th2 response that is dependent on the presence of intact glycans. Infect. Immun. 2004. 72: 398407.
  • 23
    Jeannin, P., Jaillon, S. and Delneste, Y., Pattern recognition receptors in the immune response against dying cells. Curr. Opin. Immunol. 2008. 20: 530537.
  • 24
    Rzepecka, J., Rausch, S., Klotz, C., Schnoller, C., Kornprobst, T., Hagen, J., Ignatius, R. et al., Calreticulin from the intestinal nematode Heligmosomoides polygyrus is a Th2-skewing protein and interacts with murine scavenger receptor-A. Mol. Immunol. 2009. 46: 11091119.
  • 25
    Jankovic, D., Steinfelder, S., Kullberg, M. C. and Sher, A., Mechanisms underlying helminth- induced Th2 polarization: default, negative or positive pathways? Chem. Immunol. Allergy 2006. 90: 6581.
  • 26
    Akira, S. and Takeda, K., Toll-like receptor signalling. Nat. Rev. Immunol. 2004. 4: 499511.
  • 27
    Goodridge, H. S., Harnett, W., Liew, F. Y. and Harnett, M. M., Differential regulation of interleukin-12 p40 and p35 induction via Erk mitogen-activated protein kinase-dependent and -independent mechanisms and the implications for bioactive IL-12 and IL-23 responses. Immunology 2003. 109: 415425.
  • 28
    Kane, C. M., Cervi, L., Sun, J., McKee, A. S., Masek, K. S., Shapira, S., Hunter, C. A. and Pearce, E. J., Helminth antigens modulate TLR-initiated dendritic cell activation. J. Immunol. 2004. 173: 74547461.
  • 29
    Thomas, P. G., Carter, M. R., Da'Dara, A. A., DeSimone, T. M. and Harn, D. A., A helminth glycan induces APC maturation via alternative NF-kappa B activation independent of I kappa B alpha degradation. J. Immunol. 2005. 175: 20822090.
  • 30
    Agrawal, S., Agrawal, A., Doughty, B., Gerwitz, A., Blenis, J., Van Dyke, T. and Pulendran, B., Cutting edge: different Toll-like receptor agonists instruct dendritic cells to induce distinct Th responses via differential modulation of extracellular signal-regulated kinase-mitogen-activated protein kinase and c-Fos. J. Immunol. 2003. 171: 49844989.
  • 31
    Nakahara, T., Moroi, Y., Uchi, H. and Furue, M., Differential role of MAPK signalling in human dendritic cell maturation and Th1/Th2 engagement. J. Dermatol. Sci. 2006. 42: 111.
  • 32
    Artis, D., Kane, C. M., Fiore, J., Zaph, C., Shapira, S., Joyce, K., MacDonald, A. et al., Dendritic cell-intrinsic expression of NF-kappaB1 is required to promote optimal Th2 cell differentiation. J. Immunol. 2005. 174: 71547159.
  • 33
    Balic, A., Harcus, Y., Holland, M. J. and Maizels, R. M., Selective maturation of dendritic cells by Nippostrongylus brasiliensis-secreted proteins drives Th2 immune responses. Eur. J. Immunol. 2004. 34: 30473059.
  • 34
    Segura, M., Su, Z., Piccirillo, C. and Stevenson, M. M., Impairment of dendritic cell function by excretory-secretory products: a potential mechanism for nematode-induced immunosuppression. Eur. J. Immunol. 2007. 37: 18871904.
  • 35
    Brannstrom, K., Sellin, M. E., Holmfeldt, P., Brattsand, M. and Gullberg, M., The Schistosoma mansoni protein Sm16/SmSLP/SmSPO-1 assembles into a nine-subunit oligomer with potential To inhibit Toll-like receptor signalling. Infect. Immun. 2009. 77: 11441154.
  • 36
    Hamilton, C. M., Dowling, D. J., Loscher, C. E., Morphew, R. M., Brophy, P. M. and O'Neill, S. M., The Fasciola hepatica tegumental antigen suppresses dendritic cell maturation and function. Infect. Immun. 2009. 77: 24882498.
  • 37
    Everts, B., Perona-Wright, G., Smits, H. H., Hokke, C. H., van der Ham, A. J., Fitzsimmons, C. M., Doenhoff, M. J. et al., Omega-1, a glycoprotein secreted by Schistosoma mansoni eggs, drives Th2 responses. J. Exp. Med. 2009. 206: 16731680.
  • 38
    Cervi, L., MacDonald, A. S., Kane, C., Dzierszinski, F. and Pearce, E. J., Cutting edge: dendritic cells copulsed with microbial and helminth antigens undergo modified maturation, segregate the antigens to distinct intracellular compartments, and concurrently induce microbe-specific th1 and helminth-specific th2 responses. J. Immunol. 2004. 172: 20162020.
  • 39
    Rigano, R., Buttari, B., Profumo, E., Ortona, E., Delunardo, F., Margutti, P., Mattei, V. et al., Echinococcus granulosus antigen B impairs human dendritic cell differentiation and polarizes immature dendritic cell maturation towards a Th2 cell response. Infect. Immun. 2007. 75: 16671678.
  • 40
    Gringhuis, S. I., den Dunnen, J., Litjens, M., van het Hof, B., van Kooyk, Y. and Geijtenbeek, T. B. H., C-Type lectin DC-SIGN modulates Toll-like receptor signalling via Raf-1 kinase-dependent acetylation of transcription factor NF-[kappa]B. Immunity 2007. 26: 605616.
  • 41
    Hovius, J. W., de Jong, M. A., den Dunnen, J., Litjens, M., Fikrig, E., van der, P. T., Gringhuis, S. I. and Geijtenbeek, T. B., Salp15 binding to DC-SIGN inhibits cytokine expression by impairing both nucleosome remodeling and mRNA stabilization. PLoS Pathog. 2008. 4: e31.
  • 42
    Geijtenbeek, T. B., Van Vliet, S. J., Koppel, E. A., Sanchez-Hernandez, M., Vandenbroucke-Grauls, C. M., Appelmelk, B. and Van Kooyk, Y., Mycobacteria target DC-SIGN to suppress dendritic cell function. J. Exp. Med. 2003. 197: 717.
  • 43
    Gringhuis, S. I., den, D. J., Litjens, M., vand, V. and Geijtenbeek, T. B., Carbohydrate-specific signalling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat. Immunol. 2009. 10: 10811088.
  • 44
    Hewitson, J. P., Grainger, J. R. and Maizels, R. M., Helminth immunoregulation: the role of parasite secreted proteins in modulating host immunity. Mol. Biochem. Parasitol. 2009. 167: 111.
  • 45
    Steinfelder, S., Andersen, J. F., Cannons, J. L., Feng, C. G., Joshi, M., Dwyer, D., Caspar, P. et al., The major component in schistosome eggs responsible for conditioning dendritic cells for Th2 polarization is a T2 ribonuclease (omega-1). J. Exp. Med. 2009. 206: 16811690.
  • 46
    Garcia-Ortega, L., Lacadena, J., Villalba, M., Rodriguez, R., Crespo, J. F., Rodriguez, J., Pascual, C. et al., Production and characterization of a noncytotoxic deletion variant of the Aspergillus fumigatus allergen Aspf1 displaying reduced IgE binding. FEBS J. 2005. 272: 25362544.
  • 47
    Yang, D., Chen, Q., Su, S. B., Zhang, P., Kurosaka, K., Caspi, R. R., Michalek, S. M. et al., Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2-MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. J. Exp. Med. 2008. 205: 7990.
  • 48
    Forster-Waldl, E., Marchetti, M., Scholl, I., Focke, M., Radauer, C., Kinaciyan, T., Nentwich, I. et al., Type I allergy to elderberry (Sambucus nigra) is elicited by a 33.2 kDa allergen with significant homology to ribosomal inactivating proteins. Clin. Exp. Allergy 2003. 33: 17031710.
  • 49
    Szalai, K., Scholl, I., Forster-Waldl, E., Polito, L., Bolognesi, A., Untersmayr, E., Riemer, A. B. et al., Occupational sensitization to ribosome-inactivating proteins in researchers. Clin. Exp. Allergy 2005. 35: 13541360.
  • 50
    Schnoeller, C., Rausch, S., Pillai, S., Avagyan, A., Wittig, B. M., Loddenkemper, C., Hamann, A. et al., A helminth immunomodulator reduces allergic and inflammatory responses by induction of IL-10-producing macrophages. J. Immunol. 2008. 180: 42654272.
  • 51
    Schierack, P., Lucius, R., Sonnenburg, B., Schilling, K. and Hartmann, S., Parasite-specific immunomodulatory functions of filarial cystatin. Infect. Immun. 2003. 71: 24222429.
  • 52
    Schonemeyer, A., Lucius, R., Sonnenburg, B., Brattig, N., Sabat, R., Schilling, K., Bradley, J. and Hartmann, S., Modulation of human T cell responses and macrophage functions by onchocystatin, a secreted protein of the filarial nematode Onchocerca volvulus. J. Immunol. 2001. 167: 32073215.
  • 53
    Dainichi, T., Maekawa, Y., Ishii, K., Zhang, T., Nashed, B. F., Sakai, T., Takashima, M. and Himeno, K., Nippocystatin, a cysteine protease inhibitor from Nippostrongylus brasiliensis, inhibits antigen processing and modulates antigen-specific immune response. Infect. Immun. 2001. 69: 73807386.
  • 54
    Manoury, B., Gregory, W. F., Maizels, R. M. and Watts, C., Bm-CPI-2, a cystatin homolog secreted by the filarial parasite Brugia malayi, inhibits class II MHC-restricted antigen processing. Curr. Biol. 2001. 11: 447451.
  • 55
    O'Neill, S. M., Mills, K. H. and Dalton, J. P., Fasciola hepatica cathepsin L cysteine proteinase suppresses Bordetella pertussis-specific interferon-gamma production in vivo. Parasite Immunol. 2001. 23: 541547.
  • 56
    Donnelly, S., Dalton, J. P. and Loukas, A., Proteases in helminth- and allergen- induced inflammatory responses. Chem. Immunol. Allergy 2006. 90: 4564.
  • 57
    Hammad, H., Charbonnier, A. S., Duez, C., Jacquet, A., Stewart, G. A., Tonnel, A. B. and Pestel, J., Th2 polarization by Der p 1-pulsed monocyte-derived dendritic cells is due to the allergic status of the donors. Blood 2001. 98: 11351141.
  • 58
    Saenz, S. A., Taylor, B. C. and Artis, D., Welcome to the neighborhood: epithelial cell-derived cytokines license innate and adaptive immune responses at mucosal sites. Immunol. Rev. 2008. 226: 172190.
  • 59
    Soumelis, V., Reche, P. A., Kanzler, H., Yuan, W., Edward, G., Homey, B., Gilliet, M. et al., Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat. Immunol. 2002. 3: 673680.
  • 60
    Taylor, B. C., Zaph, C., Troy, A. E., Du, Y., Guild, K. J., Comeau, M. R. and Artis, D., TSLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis. J. Exp. Med. 2009. 206: 655667.
  • 61
    Massacand, J. C., Stettler, R. C., Meier, R., Humphreys, N. E., Grencis, R. K., Marsland, B. J. and Harris, N. L., Helminth products bypass the need for TSLP in Th2 immune responses by directly modulating dendritic cell function. Proc. Natl.Acad. Sci. USA 2009. 106: 1396813973.
  • 62
    Ramalingam, T. R., Pesce, J. T., Mentink-Kane, M. M., Madala, S., Cheever, A. W., Comeau, M. R., Ziegler, S. F. and Wynn, T. A., Regulation of helminth-induced Th2 responses by thymic stromal lymphopoietin. J. Immunol. 2009. 182: 64526459.
  • 63
    Owyang, A. M., Zaph, C., Wilson, E. H., Guild, K. J., McClanahan, T., Miller, H. R., Cua, D. J. et al., Interleukin 25 regulates type 2 cytokine-dependent immunity and limits chronic inflammation in the gastrointestinal tract. J. Exp. Med. 2006. 203: 843849.
  • 64
    Humphreys, N. E., Xu, D., Hepworth, M. R., Liew, F. Y. and Grencis, R. K., IL-33, a potent inducer of adaptive immunity to intestinal nematodes. J. Immunol. 2008. 180: 24432449.
  • 65
    Wang, Y. H., Angkasekwinai, P., Lu, N., Voo, K. S., Arima, K., Hanabuchi, S., Hippe, A. et al., IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. J. Exp. Med. 2007. 204: 18371847.
  • 66
    Rank, M. A., Kobayashi, T., Kozaki, H., Bartemes, K. R., Squillace, D. L. and Kita, H., IL-33-activated dendritic cells induce an atypical TH2-type response. J. Allergy Clin. Immunol. 2009. 123: 10471054.
  • 67
    Kobayashi, N., Karisola, P., Pena-Cruz, V., Dorfman, D. M., Jinushi, M., Umetsu, S. E., Butte, M. J. et al., TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity 2007. 27: 927940.
  • 68
    Stuart, L. M., Lucas, M., Simpson, C., Lamb, J., Savill, J. and Lacy-Hulbert, A., Inhibitory effects of apoptotic cell ingestion upon endotoxin-driven myeloid dendritic cell maturation. J. Immunol. 2002. 168: 16271635.
  • 69
    Steinman, R. M., Turley, S., Mellman, I. and Inaba, K., The induction of tolerance by dendritic cells that have captured apoptotic cells. J. Exp. Med. 2000. 191: 411416.
  • 70
    Semnani, R. T., Liu, A. Y., Sabzevari, H., Kubofcik, J., Zhou, J., Gilden, J. K. and Nutman, T. B., Brugia malayi microfilariae induce cell death in human dendritic cells, inhibit their ability to make IL-12 and IL-10, and reduce their capacity to activate CD4+T cells. J. Immunol. 2003. 171: 19501960.
  • 71
    Semnani, R. T., Venugopal, P. G., Mahapatra, L., Skinner, J. A., Meylan, F., Chien, D., Dorward, D. W. et al., Induction of TRAIL- and TNF-alpha-dependent apoptosis in human monocyte-derived dendritic cells by microfilariae of Brugia malayi. J. Immunol. 2008. 181: 70817089.
  • 72
    Koski, K. G. and Scott, M. E., Gastrointestinal nematodes, nutrition and immunity: breaking the negative spiral. Annu. Rev. Nutr. 2001. 21: 297321.
  • 73
    Stephenson, L. S., Latham, M. C. and Ottesen, E. A., Malnutrition and parasitic helminth infections. Parasitology 2000. 121: S23S38.
  • 74
    Solomons, N. W., Pathways to the impairment of human nutritional status by gastrointestinal pathogens. Parasitology 1993. 107: S19S35.
  • 75
    Neumann, C. G., Lawlor, G. J.,Jr., Stiehm, E. R., Swenseid, M. E., Newton, C., Herbert, J., Ammann, A. J. and Jacob, M., Immunologic responses in malnourished children. Am. J. Clin. Nutr. 1975. 28: 89104.
  • 76
    Hughes, S. M., Amadi, B., Mwiya, M., Nkamba, H., Tomkins, A. and Goldblatt, D., Dendritic cell anergy results from endotoxemia in severe malnutrition. J. Immunol. 2009. 183: 28182826.
  • 77
    Abe, M., Akbar, F., Matsuura, B., Horiike, N. and Onji, M., Defective antigen-presenting capacity of murine dendritic cells during starvation. Nutrition 2003. 19: 265269.
  • 78
    Niiya, T., Akbar, S. M., Yoshida, O., Miyake, T., Matsuura, B., Murakami, H., Abe, M. et al., Impaired dendritic cell function resulting from chronic undernutrition disrupts the antigen-specific immune response in mice. J. Nutr. 2007. 137: 671675.
  • 79
    Shi, H. N., Scott, M. E., Stevenson, M. M. and Koski, K. G., Energy restriction and zinc deficiency impair the functions of murine T cells and antigen-presenting cells during gastrointestinal nematode infection. J. Nutr. 1998. 128: 2027.
  • 80
    Palm, N. W. and Medzhitov, R., Pattern recognition receptors and control of adaptive immunity. Immunol. Rev. 2009. 227: 221233.
  • 81
    MacDonald, A. S. and Maizels, R. M., Alarming dendritic cells for Th2 induction. J. Exp. Med. 2008. 205: 1317.
  • 82
    Oswald, I. P., Caspar, P., Jankovic, D., Wynn, T. A., Pearce, E. J. and Sher, A., IL-12 inhibits Th2 cytokine responses induced by eggs of Schistosoma mansoni. J. Immunol. 1994. 153: 17071713.
  • 83
    Jankovic, D., Kullberg, M. C., Hieny, S., Caspar, P., Collazo, C. M. and Sher, A., In the absence of IL-12, CD4(+) T cell responses to intracellular pathogens fail to default to a Th2 pattern and are host protective in an IL-10(−/−) setting. Immunity 2002. 16: 429439.
  • 84
    MacDonald, A. S., Straw, A. D., Dalton, N. M. and Pearce, E. J., Cutting edge: Th2 response induction by dendritic cells: a role for CD40. J. Immunol. 2002. 168: 537540.
  • 85
    MacDonald, A. S., Patton, E. A., La Flamme, A. C., Araujo, M. I., Huxtable, C. R., Bauman, B. and Pearce, E. J., Impaired Th2 development and increased mortality during Schistosoma mansoni infection in the absence of CD40/CD154 interaction. J. Immunol. 2002. 168: 46434649.
  • 86
    de Jong, E. C., Vieira, P. L., Kalinski, P., Schuitemaker, J. H., Tanaka, Y., Wierenga, E. A., Yazdanbakhsh, M. and Kapsenberg, M. L., Microbial compounds selectively induce Th1 cell-promoting or Th2 cell-promoting dendritic cells in vitro with diverse th cell-polarizing signals. J. Immunol. 2002. 168: 17041709.
  • 87
    Ito, T., Wang, Y. H., Duramad, O., Hori, T., Delespesse, G. J., Watanabe, N., Qin, F. X. et al., TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J. Exp. Med. 2005. 202: 12131223.
  • 88
    Jenkins, S. J., Perona-Wright, G., Worsley, A. G., Ishii, N. and MacDonald, A. S., Dendritic cell expression of OX40 ligand acts as a costimulatory, not polarizing, signal for optimal Th2 priming and memory induction in vivo. J. Immunol. 2007. 179: 35153523.
  • 89
    Ekkens, M. J., Liu, Z., Liu, Q., Whitmire, J., Xiao, S., Foster, A., Pesce, J. et al., The role of OX40 ligand interactions in the development of the Th2 response to the gastrointestinal nematode parasite Heligmosomoides polygyrus. J. Immunol. 2003. 170: 384393.
  • 90
    Amsen, D., Blander, J. M., Lee, G. R., Tanigaki, K., Honjo, T. and Flavell, R. A., Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 2004. 117: 515526.
  • 91
    Liotta, F., Frosali, F., Querci, V., Mantei, A., Fili, L., Maggi, L., Mazzinghi, B. et al., Human immature myeloid dendritic cells trigger a TH2-polarizing program via Jagged-1/Notch interaction. J. Allergy Clin. Immunol. 2008. 121: 10001005.
  • 92
    Worsley, A. G., Leibundgut-Landmann, S., Slack, E., Phng, L. K., Gerhardt, H., Sousa, C. R. and MacDonald, A. S., Dendritic cell expression of the Notch ligand jagged2 is not essential for Th2 response induction in vivo. Eur. J. Immunol. 2008. 38: 10431049.
  • 93
    Krawczyk, C. M., Sun, J. and Pearce, E. J., Th2 differentiation is unaffected by Jagged2 expression on dendritic cells. J. Immunol. 2008. 180: 79317937.
  • 94
    Sun, J., Krawczyk, C. J. and Pearce, E. J., Suppression of th2 cell development by notch ligands delta1 and delta4. J. Immunol. 2008. 180: 16551661.
  • 95
    Hosken, N. A., Shibuya, K., Heath, A. W., Murphy, K. M. and O'Garra, A., The effect of antigen dose on CD4+T helper cell phenotype development in a T cell receptor-alpha beta-transgenic model. J. Exp. Med. 1995. 182: 15791584.
  • 96
    Constant, S., Pfeiffer, C., Woodard, A., Pasqualini, T. and Bottomly, K., Extent of T cell receptor ligation can determine the functional differentiation of naive CD4+T cells. J. Exp. Med. 1995. 182: 15911596.
  • 97
    Schramm, G., Mohrs, K., Wodrich, M., Doenhoff, M. J., Pearce, E. J., Haas, H. and Mohrs, M., Cutting edge: IPSE/alpha-1, a glycoprotein from Schistosoma mansoni eggs, induces IgE-dependent, antigen-independent IL-4 production by murine basophils in vivo. J. Immunol. 2007. 178: 60236027.
  • 98
    Perrigoue, J. G., Saenz, S. A., Siracusa, M. C., Allenspach, E. J., Taylor, B. C., Giacomin, P. R., Nair, M. G. et al., MHC class II-dependent basophil-CD4(+) T cell interactions promote T(H)2 cytokine-dependent immunity. Nat. Immunol. 2009. 10: 697705.
  • 99
    Manavalan, J. S., Rossi, P. C., Vlad, G., Piazza, F., Yarilina, A., Cortesini, R., Mancini, D. and Suciu-Foca, N., High expression of ILT3 and ILT4 is a general feature of tolerogenic dendritic cells. Transpl. Immunol. 2003. 11: 245258.
  • 100
    Selenko-Gebauer, N., Majdic, O., Szekeres, A., Hofler, G., Guthann, E., Korthauer, U., Zlabinger, G. et al., B7-H1 (programmed death-1 ligand) on dendritic cells is involved in the induction and maintenance of T cell anergy. J. Immunol. 2003. 170: 36373644.
  • 101
    Munn, D. H., Sharma, M. D., Lee, J. R., Jhaver, K. G., Johnson, T. S., Keskin, D. B., Marshall, B. et al., Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 2002. 297: 18671870.
  • 102
    Smith, P., Walsh, C. M., Mangan, N. E., Fallon, R. E., Sayers, J. R., McKenzie, A. N. and Fallon, P. G., Schistosoma mansoni worms induce anergy of T cells via selective up-regulation of programmed death ligand 1 on macrophages. J. Immunol. 2004. 173: 12401248.
  • 103
    Levings, M. K., Gregori, S., Tresoldi, E., Cazzaniga, S., Bonini, C. and Roncarolo, M. G., Differentiation of Tr1 cells by immature dendritic cells requires IL-10 but not CD25+CD4+Tr cells. Blood 2005. 105: 11621169.
  • 104
    Fantini, M. C., Becker, C., Monteleone, G., Pallone, F., Galle, P. R. and Neurath, M. F., Cutting edge: TGF-beta induces a regulatory phenotype in CD4+. J. Immunol. 2004. 172: 51495153.
  • 105
    Peng, Y., Laouar, Y., Li, M. O., Green, E. A. and Flavell, R. A., TGF-beta regulates in vivo expansion of Foxp3-expressing CD4+CD25+regulatory T cells responsible for protection against diabetes. Proc. Natl. Acad. Sci. USA 2004. 101: 45724577.
  • 106
    Hesse, M., Piccirillo, C. A., Belkaid, Y., Prufer, J., Mentink-Kane, M., Leusink, M., Cheever, A. W. et al., The pathogenesis of schistosomiasis is controlled by cooperating IL-10-producing innate effector and regulatory T cells. J. Immunol. 2004. 172: 31573166.
  • 107
    Taylor, J. J., Mohrs, M. and Pearce, E. J., Regulatory T cell responses develop in parallel to Th responses and control the magnitude and phenotype of the Th effector population. J. Immunol. 2006. 176: 58395847.
  • 108
    Yamazaki, S., Inaba, K., Tarbell, K. V. and Steinman, R. M., Dendritic cells expand antigen-specific Foxp3+CD25+CD4+regulatory T cells including suppressors of alloreactivity. Immunol. Rev. 2006. 212: 314329.
  • 109
    Wilson, M. S., Mentink-Kane, M. M., Pesce, J. T., Ramalingam, T. R., Thompson, R. and Wynn, T. A., Immunopathology of schistosomiasis. Immunol. Cell Biol. 2007. 85: 148154.
  • 110
    Fallon, P. G., Richardson, E. J., McKenzie, G. J. and McKenzie, A. N., Schistosome infection of transgenic mice defines distinct and contrasting pathogenic roles for IL-4 and IL-13: IL-13 is a profibrotic agent. J. Immunol. 2000. 164: 25852591.
  • 111
    Stadecker, M. J., Asahi, H., Finger, E., Hernandez, H. J., Rutitzky, L. I. and Sun, J., The immunobiology of Th1 polarization in high-pathology schistosomiasis. Immunol. Rev. 2004. 201: 168179.
  • 112
    Diaz, A. and Allen, J. E. Mapping immune response profiles: the emerging scenario from helminth immunology. Eur. J. Immunol. 2007. 37: 33193326.
  • 113
    Kreider, T., Anthony, R. M., Urban, J. F., Jr., and Gause, W. C., Alternatively activated macrophages in helminth infections. Curr. Opin. Immunol. 2007. 19: 448453.
  • 114
    Ho, V. W. and Sly, L. M., Derivation and characterization of murine alternatively activated (M2) macrophages. Methods Mol. Biol. 2009. 531: 173185.
  • 115
    Dunne, D. W., Lucas, S., Bickle, Q., Pearson, S., Madgwick, L., Bain, J. and Doenhoff, M. J., Identification and partial purification of an antigen (omega 1) from Schistosoma mansoni eggs which is putatively hepatotoxic in T-cell deprived mice. Trans. R. Soc. Trop. Med. Hyg. 1981. 75: 5471.
  • 116
    Williams, M. A., Rangasamy, T., Bauer, S. M., Killedar, S., Karp, M., Kensler, T. W., Yamamoto, M. et al., Disruption of the transcription factor Nrf2 promotes pro-oxidative dendritic cells that stimulate Th2-like immunoresponsiveness upon activation by ambient particulate matter. J. Immunol. 2008. 181: 45454559.
  • 117
    Allakhverdi, Z., Comeau, M. R., Jessup, H. K., Yoon, B. R., Brewer, A., Chartier, S., Paquette, N. et al., Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. J. Exp. Med. 2007. 204: 253258.
  • 118
    Rubartelli, A. and Lotze, M. T., Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol. 2007. 28: 429436.
  • 119
    Aranami, T. and Yamamura, T., Th17 Cells and autoimmune encephalomyelitis (EAE/MS). Allergol. Int. 2008. 57: 115120.
  • 120
    Alex, P., Zachos, N. C., Nguyen, T., Gonzales, L., Chen, T. E., Conklin, L. S., Centola, M. and Li, X., Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflamm. Bowel Dis. 2009. 15: 341352.
  • 121
    Specht, S., Volkmann, L., Wynn, T. and Hoerauf, A., Interleukin-10 (IL-10) counterregulates IL-4-dependent effector mechanisms in Murine Filariasis. Infect. Immun. 2004. 72: 62876293.
  • 122
    Taylor, M. D., LeGoff, L., Harris, A., Malone, E., Allen, J. E. and Maizels, R. M., Removal of regulatory T cell activity reverses hyporesponsiveness and leads to filarial parasite clearance in vivo. J. Immunol. 2005. 174: 49244933.
  • 123
    Taylor, M. D., Harris, A., Babayan, S. A., Bain, O., Culshaw, A., Allen, J. E. and Maizels, R. M., CTLA-4 and CD4+CD25+regulatory T cells inhibit protective immunity to filarial parasites in vivo. J. Immunol. 2007. 179: 46264634.
  • 124
    Sadler, C. H., Rutitzky, L. I., Stadecker, M. J. and Wilson, R. A., IL-10 is crucial for the transition from acute to chronic disease state during infection of mice with Schistosoma mansoni. Eur. J. Immunol. 2003. 33: 880888.
  • 125
    Bliss, S. K., Alcaraz, A. and Appleton, J. A., IL-10 prevents liver necrosis during murine infection with Trichinella spiralis. J. Immunol. 2003. 171: 31423147.
  • 126
    Schopf, L. R., Hoffmann, K. F., Cheever, A. W., Urban, J. F., Jr., and Wynn, T. A., IL-10 is critical for host resistance and survival during gastrointestinal helminth infection. J. Immunol. 2002. 168: 23832392.
  • 127
    Jenkins, S. J. and Mountford, A. P., Dendritic cells activated with products released by schistosome larvae drive Th2-type immune responses, which can be inhibited by manipulation of CD40 costimulation. Infect. Immun. 2005. 73: 395402.
  • 128
    Whelan, M., Harnett, M. M., Houston, K. M., Patel, V., Harnett, W. and Rigley, K. P., A filarial nematode-secreted product signals dendritic cells to acquire a phenotype that drives development of Th2 cells. J. Immunol. 2000. 164: 64536460.
  • 129
    Robinson, M. W., Dalton, J. P. and Donnelly, S., Helminth pathogen cathepsin proteases: it's a family affair. Trends Biochem. Sci. 2008. 33: 601608.