• 1
    Yee, C., Thompson, J. A., Byrd, D., Riddell, S. R., Roche, P., Celis, E. and Greenberg, P, D., Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc. Natl. Acad. Sci. USA 2002. 99: 1616816173.
  • 2
    Savoldo, B., Rooney, C. M., Di Stasi, A., Abken, H., Hombach, A., Foster, A. E., Zhang, L. et al., Epstein Barr virus specific cytotoxic T lymphocytes expressing the anti-CD30zeta artificial chimeric T-cell receptor for immunotherapy of Hodgkin disease. Blood 2007. 110: 26202630.
  • 3
    Dudley, M. E., Wunderlich, J. R., Robbins, P. F., Yang, J. C., Hwu, P., Schwartzentruber, D. J., Topalian, S. L. et al., Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002. 298: 850854.
  • 4
    Dudley, M. E., Wunderlich, J. R., Yang, J. C., Sherry, R. M., Topalian, S. L., Restifo, N. P., Royal, R. E. et al., Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J. Clin. Oncol. 2005. 23: 23462357.
  • 5
    Dudley, M. E., Yang, J. C., Sherry, R., Hughes, M. S., Royal, R., Kammula, U., Robbins, P. F. et al., Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J. Clin. Oncol. 2008. 26: 52335239.
  • 6
    Dudley, M. E., Wunderlich, J. R., Shelton, T. E., Even, J, and Rosenberg, S. A., Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J. Immunother. 2003. 26: 332342.
  • 7
    Morgan, R. A., Dudley, M. E., Wunderlich, J. R., Hughes, M. S., Yang, J. C., Sherry, R. M., Royal, R. E. et al., Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006. 314: 126129.
  • 8
    Johnson, L. A., Morgan, R. A., Dudley, M. E., Cassard, L., Yang, J. C., Hughes, M. S., Kammula, U. S. et al., Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 2009. 114: 535546.
  • 9
    Parkhurst, M. R., Yang, J. C., Langan, R. C., Dudley, M. E., Nathan, D. A., Feldman, S. A., Davis, J. L. et al., T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol. Ther. 2010. 19: 620626.
  • 10
    Robbins, P. F., Morgan, R. A., Feldman, S. A., Yang, J. C., Sherry, R. M., Dudley, M. E., Wunderlich, J. R. et al., Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol. 2011. 29: 917924.
  • 11
    Kammertoens, T. and Blankenstein, T., Making and circumventing tolerance to cancer. Eur. J. Immunol. 2009. 39: 23452353.
  • 12
    Coccoris, M., Straetemans, T., Govers, C., Lamers, C., Sleijfer, S. and Debets, R., T cell receptor (TCR) gene therapy to treat melanoma: lessons from clinical and preclinical studies. Exp. Opin. Biol. Ther. 2010. 10: 547562.
  • 13
    Govers, C., Sebestyén, Z., Coccoris, M., Willemsen, R. A. and Debets, R., T cell receptor gene therapy: strategies for optimizing transgenic TCR pairing. Trends Mol. Med. 2010. 16: 7787.
  • 14
    Willemsen, R. A., Weijtens, M. E., Ronteltap, C., Eshhar, Z., Gratama, J. W., Chames, P. and Bolhuis, R. L., Grafting primary human T lymphocytes with cancer-specific chimeric single chain and two chain TCR. Gene Ther. 2000. 7: 13691377.
  • 15
    Bendle, G. M., Linnemann, C., Hooijkaas, A. I., Bies, L., de Witte, M. A., Jorritsma, A., Kaiser, A. D. et al., Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nat. Med. 2010. 16: 565570.
  • 16
    Cohen, C. J., Zhao, Y., Zheng, Z., Rosenberg, S. A. and Morgan, R. A., Enhanced antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res. 2006. 66: 88788886.
  • 17
    Kuball, J., Dossett, M. L., Wolfl, M., Ho, W. Y., Voss, R. H., Fowler, C. and Greenberg, P. D., Facilitating matched pairing and expression of TCR chains introduced into human T cells. Blood 2007. 109: 23312338.
  • 18
    Sebestyén, Z., Schooten, E., Sals, T., Zaldivar, I., San José, E., Alarcón, B., Bobisse, S. et al., Human TCR that incorporate CD3zeta induce highly preferred pairing between TCRalpha and beta chains following gene transfer. J. Immunol. 2008. 180: 77367746.
  • 19
    Yang, W., Beaudoin, E. L., Lu, L., Du Pasquier, R. A., Kuroda, M. J., Willemsen, R. A., Koralnik, I. J. and Junghans, R. P., Chimeric immune receptors (CIRs) specific to JC virus for immunotherapy in progressive multifocal leukoencephalopathy (PML). Int. Immunol. 2007. 19: 10831093.
  • 20
    Schaft, N., Lankiewicz, B., Gratama, J. W., Bolhuis, R. L. and Debets, R., Flexible and sensitive method to functionally validate tumor-specific receptors via activation of NFAT. J. Immunol. Meth. 2003. 280: 1324.
  • 21
    Schaft, N., Lankiewicz, B., Drexhage, J., Berrevoets, C., Moss, D. J., Levitsky, V., Bonneville, M. et al., T cell re-targeting to EBV antigens following TCR gene transfer: CD28-containing receptors mediate enhanced antigen-specific IFNgamma production. Int. Immunol. 2006. 18: 591601.
  • 22
    Zambricki, E., Zal, T., Yachi, P., Shigeoka, A., Sprent, J., Gascoigne, N. and McKay, D., In vivo anergized T cells form altered immunological synapses in vitro. Am. J. Transplant. 2006. 6: 25722579.
  • 23
    Zal, T. and Gascoigne, N. R., Using live FRET imaging to reveal early protein–protein interactions during T cell activation. Curr. Opin. Immunol. 2004. 16: 674683.
  • 24
    Yachi, P. P., Ampudia, J., Zal, T. and Gascoigne, N. R., Altered peptide ligands induce delayed CD8 T cell receptor interaction – a role for CD8 in distinguishing antigen quality. Immunity 2006. 25: 203211.
  • 25
    König, R., Interactions between MHC molecules and co-receptors of the TCR. Curr. Opin. Immunol. 2002. 14: 7583.
  • 26
    Filipp, D. and Julius, M., Lipid rafts: resolution of the “fyn problem”? Mol. Immunol. 2004. 41: 645656.
  • 27
    Nagy, P., Vámosi, G., Bodnár, A., Lockett, S. J. and Szöllősi, J., Intensity-based energy transfer measurements in digital imaging microscopy. Eur. Biophys. J. 1998. 27: 377389.
  • 28
    Vereb, G., Matko, J. and Szöllősi, J., Cytometry of fluorescence resonance energy transfer. Meth. Cell Biol. 2004. 75: 105152.
  • 29
    Sebestyén, Z., Nagy, P., Horváth, G., Vámosi, G., Debets, R., Gratama, J. W., Alexander, D. R. and Szöllősi, J., Long wavelength fluorophores and cell-by-cell correction for autofluorescence significantly improves the accuracy of flow cytometric energy transfer measurements on a dual-laser benchtop flow cytometer. Cytometry 2002. 48: 124135.
  • 30
    Szöllősi, J., Damjanovich, S., Nagy, P., Vereb, G. and Mátyus, L., Principles of resonance energy transfer. Curr. Protoc. Cytom. 2006.
  • 31
    Willemsen, R., Ronteltap, C., Heuveling, M., Debets, R. and Bolhuis, R., Redirecting human CD4+ T lymphocytes to the MHC class I-restricted melanoma antigen MAGE-A1 by TCR alphabeta gene transfer requires CD8alpha. Gene Ther. 2005. 12: 140146.
  • 32
    Schaft, N., Willemsen, R. A., de Vries, J., Lankiewicz, B., Essers, B. W., Gratama, J. W., Figdor, C. G. et al., Peptide fine specificity of anti-glycoprotein 100 CTL is preserved following transfer of engineered TCR alpha beta genes into primary human T lymphocytes. J. Immunol. 2003. 170: 21862194.
  • 33
    Willemsen, R. A., Sebestyen, Z., Ronteltap, C., Berrevoets, C., Drexhage, J. and Debets, R., CD8 alpha coreceptor to improve TCR gene transfer to treat melanoma: down-regulation of tumor-specific production of IL-4, IL-5, and IL-10. J. Immunol. 2006. 177: 991998.
  • 34
    Kuhns, M. S., Girvin, A. T., Klein, L. O., Chen, R., Jensen, K. D., Newell, E. W., Huppa, J. B. et al., Evidence for a functional sidedness to the alphabetaTCR. Proc. Natl. Acad. Sci. USA 2010. 107: 50945099.
  • 35
    Call, M. E. and Wucherpfennig, K. W., The T cell receptor: critical role of the membrane environment in receptor assembly and function. Annu. Rev. Immunol. 2005. 23: 101125.
  • 36
    Call, M. E., Schnell, J. R., Xu, C., Lutz, R. A., Chou, J. J. and Wucherpfennig, K. W., The structure of the zetazeta transmembrane dimer reveals features essential for its assembly with the T cell receptor. Cell 2006. 127: 355368.
  • 37
    Bridgeman, J. S., Hawkins, R. E., Bagley, S., Blaylock, M., Holland, M. and Gilham, D. E., The optimal antigen response of chimeric antigen receptors harboring the CD3zeta transmembrane domain is dependent upon incorporation of the receptor into the endogenous TCR/CD3 complex. J. Immunol. 2010. 184: 69386949.
  • 38
    Weiss, A. and Stobo, J. D., Requirement for the coexpression of T3 and the T cell antigen receptor on a malignant human T cell line. J. Exp. Med. 1984. 160: 12841299.
  • 39
    Lamers, C. H., Willemsen, R. A., Luider, B. A., Debets, R. and Bolhuis, R. L., Protocol for gene transduction and expansion of human T lymphocytes for clinical immunogene therapy of cancer. Cancer Gene Ther. 2002. 9: 613623.
  • 40
    Lamers, C. H., Willemsen, R. A., van Elzakker, P., van Krimpen, B. A., Gratama, J. W. and Debets, R., Phoenix-ampho outperforms PG13 as retroviral packaging cells to transduce human T cells with tumor-specific receptors: implications for clinical immunogene therapy of cancer. Cancer Gene Ther. 2006. 13: 503509.
  • 41
    Roszik, J., Szöllősi, J. and Vereb, G., AccPbFRET: an ImageJ plugin for semi-automatic, fully corrected analysis of acceptor photobleaching FRET images. BMC Bioinformatics 2008. 9: 346.