• 1
    Carreno, B. M. and Collins, M., The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Annu. Rev. Immunol. 2002. 20: 2953.
  • 2
    Keir, M. E. and Sharpe, A. H., The B7/CD28 costimulatory family in autoimmunity. Immunol. Rev. 2005. 204: 128143.
  • 3
    Lesslauer, W., Koning, F., Ottenhoff, T., Giphart, M., Goulmy, E. and van Rood, J. J., T90/44 (9.3 antigen). A cell surface molecule with a function in human T cell activation. Eur. J. Immunol. 1986. 16: 12891296.
  • 4
    Pierres, A., Lopez, M., Cerdan, C., Nunes, J., Olive, D. and Mawas, C., Triggering CD 28 molecules synergize with CD 2 (T 11.1 and T 11.2)-mediated T cell activation. Eur. J. Immunol. 1988. 18: 685690.
  • 5
    Damle, N. K., Doyle, L. V., Grosmaire, L. S. and Ledbetter, J. A., Differential regulatory signals delivered by antibody binding to the CD28 (Tp44) molecule during the activation of human T lymphocytes. J. Immunol. 1988. 140: 17531761.
  • 6
    Hutloff, A., Dittrich, A. M., Beier, K. C., Eljaschewitsch, B., Kraft, R., Anagnostopoulos, I. and Kroczek, R. A., ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 1999. 397: 263266.
  • 7
    Toennies, H. M., Green, J. M. and Arch, R. H., Expression of CD30 and Ox40 on T lymphocyte subsets is controlled by distinct regulatory mechanisms. J. Leukoc. Biol. 2004. 75: 350357.
  • 8
    Brunet, J. F., Denizot, F., Luciani, M. F., Roux-Dosseto, M., Suzan, M., Mattei, M. G. and Golstein, P., A new member of the immunoglobulin superfamily – CTLA-4. Nature 1987. 328: 267270.
  • 9
    Walunas, T. L., Lenschow, D. J., Bakker, C. Y., Linsley, P. S., Freeman, G. J., Green, J. M., Thompson, C. B. and Bluestone, J. A., CTLA-4 can function as a negative regulator of T cell activation. Immunity 1994. 1: 405413.
  • 10
    Watanabe, N., Gavrieli, M., Sedy, J. R., Yang, J., Fallarino, F., Loftin, S. K., Hurchla, M. A. et al., BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat. Immunol. 2003. 4: 670679.
  • 11
    Deppong, C., Juehne, T. I., Hurchla, M., Friend, L. D., Shah, D. D., Rose, C. M., Bricker, T. L. et al., Cutting edge: B and T lymphocyte attenuator and programmed death receptor-1 inhibitory receptors are required for termination of acute allergic airway inflammation. J. Immunol. 2006. 176: 39093913.
  • 12
    Burr, J. S., Kimzey, S. L., Randolph, D. R. and Green, J. M., CD28 and CTLA4 coordinately regulate airway inflammatory cell recruitment and T-helper cell differentiation after inhaled allergen. Am. J. Respir. Cell. Mol. Biol. 2001. 24: 563568.
  • 13
    Kimzey, S. L., Liu, P. and Green, J. M., Requirement for CD28 in the effector phase of allergic airway inflammation. J. Immunol. 2004. 173: 632640.
  • 14
    Harris, N., Campbell, C., Le Gros, G. and Ronchese, F., Blockade of CD28/B7 co-stimulation by mCTLA4-Hγ1 inhibits antigen-induced lung eosinophilia but not Th2 cell development or recruitment in the lung. Eur. J. Immunol. 1997. 27: 155161.
  • 15
    Keane-Myers, A., Gause, W. C., Linsley, P. S., Chen, S. J. and Wills-Karp, M., B7-CD28/CTLA-4 costimulatory pathways are required for the development of T helper cell 2-mediated allergic airway responses to inhaled antigens. J. Immunol. 1997. 158: 20422049.
  • 16
    Linsley, P. S., Wallace, P. M., Johnson, J., Gibson, M. G., Greene, J. L., Ledbetter, J. A., Singh, C. and Tepper, M. A., Immunosuppression in vivo by the soluble form of the CTLA-4 T cell activation molecule. Science 1992. 257: 792795.
  • 17
    Linsley, P. S. and Nadler, S. G., The clinical utility of inhibiting CD28-mediated costimulation. Immunol. Rev. 2009. 229: 307321.
  • 18
    Grohmann, U., Orabona, C., Fallarino, F., Vacca, C., Calcinaro, F., Falorni, A., Candeloro, P. et al., CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat. Immunol. 2002. 3: 10971101.
  • 19
    Boasso, A., Herbeuval, J. P., Hardy, A. W., Winkler, C. and Shearer, G. M., Regulation of indoleamine 2,3-dioxygenase and tryptophanyl-tRNA-synthetase by CTLA-4-Fc in human CD4+ T cells. Blood 2005. 105: 15741581.
  • 20
    Kung, T. T., Jones, H., Adams, G. K., III, Umland, S. P., Kreutner, W., Egan, R. W., Chapman, R. W. and Watnick, A. S., Characterization of a murine model of allergic pulmonary inflammation. Int. Arch. Allergy Immunol. 1994. 105: 8390.
  • 21
    Deppong, C., Degnan, J. M., Murphy, T. L., Murphy, K. M. and Green, J. M., B and T lymphocyte attenuator regulates T cell survival in the lung. J. Immunol. 2008. 181: 29732979.
  • 22
    Lenschow, D. J., Zeng, Y., Thistlethwaite, J. R., Montag, A., Brady, W., Gibson, M. G., Linsley, P. S. and Bluestone, J. A., Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4Ig. Science 1992. 257: 789792.
  • 23
    Turka, L. A., Linsley, P. S., Lin, H., Brady, W., Leiden, J. M., Wei, R.-Q., Gibson, M. L. et al., T-cell activation by the CD28 ligand B7 is required for cardiac allograft rejection in vivo. Proc. Natl. Acad. Sci. USA 1992. 89: 1110211105.
  • 24
    Munn, D. H., Sharma, M. D., Lee, J. R., Jhaver, K. G., Johnson, T. S., Keskin, D. B., Marshall, B. et al., Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 2002. 297: 18671870.
  • 25
    Mellor, A. L., Baban, B., Chandler, P., Marshall, B., Jhaver, K., Hansen, A., Koni, P. A. et al., Cutting edge: induced indoleamine 2,3 dioxygenase expression in dendritic cell subsets suppresses T cell clonal expansion. J. Immunol. 2003. 171: 16521655.
  • 26
    Mellor, A. L., Chandler, P., Baban, B., Hansen, A. M., Marshall, B., Pihkala, J., Waldmann, H. et al., Specific subsets of murine dendritic cells acquire potent T cell regulatory functions following CTLA4-mediated induction of indoleamine 2,3 dioxygenase. Int. Immunol. 2004. 16: 13911401.
  • 27
    Munn, D. H., Sharma, M. D., Baban, B., Harding, H. P., Zhang, Y., Ron, D. and Mellor, A. L., GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 2005. 22: 633642.
  • 28
    Gurtner, G. J., Newberry, R. D., Schloemann, S. R., McDonald, K. G. and Stenson, W. F., Inhibition of indoleamine 2,3-dioxygenase augments trinitrobenzene sulfonic acid colitis in mice. Gastroenterology 2003. 125: 17621773.
  • 29
    Bronte, V. and Zanovello, P., Regulation of immune responses by L-arginine metabolism. Nat. Rev. Immunol. 2005. 5: 641654.
  • 30
    Finck, B. K., Linsley, P. S. and Wofsy, D., Treatment of murine lupus with CTLA4Ig. Science 1994. 265: 12251227.
  • 31
    Khoury, S. J., Akalin, E., Chandraker, A., Turka, L. A., Linsley, P. S., Sayegh, M. H. and Hancock, W. W., CD28-B7 costimulatory blockade by CTLA4Ig prevents actively induced experimental autoimmune encephalomyelitis and inhibits Th1 but spares Th2 cytokines in the central nervous system. J. Immunol. 1995. 155: 45214524.
  • 32
    Harris, N., Peach, R., Naemura, J., Linsley, P. S., Le Gros, G. and Ronchese, F., CD80 costimulation is essential for the induction of airway eosinophilia. J. Exp. Med. 1997. 185: 177182.
  • 33
    Van Oosterhout, A. J., Hofstra, C. L., Shields, R., Chan, B., Van Ark, I., Jardieu, P. M. and Nijkamp, F. P., Murine CTLA4-IgG treatment inhibits airway eosinophilia and hyperresponsiveness and attenuates IgE upregulation in a murine model of allergic asthma. Am. J. Respir. Cell. Mol. Biol. 1997. 17: 386392.
  • 34
    Genovese, M. C., Becker, J. C., Schiff, M., Luggen, M., Sherrer, Y., Kremer, J., Birbara, C. et al., Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N. Engl. J. Med. 2005. 353: 11141123.
  • 35
    Sharma, M. D., Baban, B., Chandler, P., Hou, D. Y., Singh, N., Yagita, H., Azuma, M. et al., Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J. Clin. Invest. 2007. 117: 25702582.
  • 36
    Chen, W., Liang, X., Peterson, A. J., Munn, D. H. and Blazar, B. R., The indoleamine 2,3-dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive T regulatory cell generation. J. Immunol. 2008. 181: 53965404.
  • 37
    Bahri, R., Naji, A., Menier, C., Charpentier, B., Carosella, E. D., Rouas-Freiss, N. and Durrbach, A., Dendritic cells secrete the immunosuppressive HLA-G molecule upon CTLA4-Ig treatment: implication in human renal transplant acceptance. J. Immunol. 2009. 183: 70547062.
  • 38
    Liang, S., Ristich, V., Arase, H., Dausset, J., Carosella, E. D. and Horuzsko, A., Modulation of dendritic cell differentiation by HLA-G and ILT4 requires the IL-6 – STAT3 signaling pathway. Proc. Natl. Acad. Sci. 2008. 105: 83578362.
  • 39
    Mazzoni, A., Bronte, V., Visintin, A., Spitzer, J. H., Apolloni, E., Serafini, P., Zanovello, P. and Segal, D. M., Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J. Immunol. 2002. 168: 689695.
  • 40
    Bingisser, R. M., Tilbrook, P. A., Holt, P. G. and Kees, U. R., Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway. J. Immunol. 1998. 160: 57295734.
  • 41
    Duhe, R. J., Evans, G. A., Erwin, R. A., Kirken, R. A., Cox, G. W. and Farrar, W. L., Nitric oxide and thiol redox regulation of Janus kinase activity. Proc. Natl. Acad. Sci. USA 1998. 95: 126131.
  • 42
    Currie, G. A., Gyure, L. and Cifuentes, L., Microenvironmental arginine depletion by macrophages in vivo. Br. J. Cancer 1979. 39: 613620.
  • 43
    Zhang, P., McGrath, B. C., Reinert, J., Olsen, D. S., Lei, L., Gill, S., Wek, S. A. et al., The GCN2 eIF2alpha kinase is required for adaptation to amino acid deprivation in mice. Mol. Cell. Biol. 2002. 22: 66816688.
  • 44
    Hill, M., Zagani, R., Voisine, C., Usal, C. and Anegon, I., Nitric oxide and indoleamine 2,3-dioxygenase mediate CTLA4Ig-induced survival in heart allografts in rats. Transplantation 2007. 84: 10601063.
  • 45
    Xiong, Y., Karupiah, G., Hogan, S. P., Foster, P. S. and Ramsay, A. J., Inhibition of allergic airway inflammation in mice lacking nitric oxide synthase 2. J. Immunol. 1999. 162: 445452.
  • 46
    Trifilieff, A., Fujitani, Y., Mentz, F., Dugas, B., Fuentes, M. and Bertrand, C., Inducible nitric oxide synthase inhibitors suppress airway inflammation in mice through down-regulation of chemokine expression. J. Immunol. 2000. 165: 15261533.
  • 47
    De Sanctis, G. T., MacLean, J. A., Hamada, K., Mehta, S., Scott, J. A., Jiao, A., Yandava, C. N. et al., Contribution of nitric oxide synthases 1, 2, and 3 to airway hyperresponsiveness and inflammation in a murine model of asthma. J. Exp. Med. 1999. 189: 16211630.
  • 48
    Shahinian, A., Pfeffer, K., Lee, K. P., Kündig, T. M., Kishihara, K., Wakeham, A., Kawai, K. et al., Differential T cell costimulatory requirements in CD28-deficient mice. Science 1993. 261: 609612.
  • 49
    Hurchla, M. A., Sedy, J. R., Gavrieli, M., Drake, C. G., Murphy, T. L. and Murphy, K. M., B and T lymphocyte attenuator exhibits structural and expression polymorphisms and is highly Induced in anergic CD4+ T cells. J. Immunol. 2005. 174: 33773385.
  • 50
    Woerly, G., Roger, N., Loiseau, S., Dombrowicz, D., Capron, A. and Capron, M., Expression of CD28 and CD86 by human eosinophils and role in the secretion of type 1 cytokines (interleukin 2 and interferon gamma): inhibition by immunoglobulin a complexes. J. Exp. Med. 1999. 190: 487495.
  • 51
    Woerly, G., Lacy, P., Younes, A. B., Roger, N., Loiseau, S., Moqbel, R. and Capron, M., Human eosinophils express and release IL-13 following CD28-dependent activation. J. Leukoc. Biol. 2002. 72: 769779.
  • 52
    Venuprasad, K., Chattopadhyay, S. and Saha, B., CD28 signaling in neutrophil induces T-cell chemotactic factor(s) modulating T-cell response. Hum. Immunol. 2003. 64: 3843.
  • 53
    Venuprasad, K., Parab, P., Prasad, D. V., Sharma, S., Banerjee, P. R., Deshpande, M., Mitra, D. K. et al., Immunobiology of CD28 expression on human neutrophils. I. CD28 regulates neutrophil migration by modulating CXCR-1 expression. Eur. J. Immunol. 2001. 31: 15361543.
  • 54
    Lee, K. P., Taylor, C., Petryniak, B., Turka, L. A., June, C. H. and Thompson, C. B., The genomic organization of the CD28 gene. Implications for the regulation of CD28 mRNA expression and heterogeneity. J. Immunol. 1990. 145: 344352.