• 1
    Steinman, R. M., Lasker Basic Medical Research Award. Dendritic cells: versatile controllers of the immune system. Nat. Med. 2007. 13: 11551159.
  • 2
    Steinman, R. M. and Banchereau, J., Taking dendritic cells into medicine. Nature 2007. 449: 419426.
  • 3
    Tacken, P. J., de Vries, I. J., Torensma, R. and Figdor, C. G., Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat. Rev. Immunol. 2007. 7: 790802.
  • 4
    Caminschi, I., Lahoud, M. H. and Shortman, K., Enhancing immune responses by targeting antigen to DC. Eur. J. Immunol. 2009. 39: 931938.
  • 5
    Bonifaz, L., Bonnyay, D., Mahnke, K., Rivera, M., Nussenzweig, M. C. and Steinman, R. M., Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J. Exp. Med. 2002. 196: 16271638.
  • 6
    Bonifaz, L. C., Bonnyay, D. P., Charalambous, A., Darguste, D. I., Fujii, S., Soares, H., Brimnes, M. K. et al., In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J. Exp. Med. 2004. 199: 815824.
  • 7
    Boscardin, S. B., Hafalla, J. C., Masilamani, R. F., Kamphorst, A. O., Zebroski, H. A., Rai, U., Morrot, A. et al., Antigen targeting to dendritic cells elicits long-lived T cell help for antibody responses. J. Exp. Med. 2006. 203: 599606.
  • 8
    Hawiger, D., Inaba, K., Dorsett, Y., Guo, M., Mahnke, K., Rivera, M., Ravetch, J. V. et al., Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 2001. 194: 769779.
  • 9
    Sancho, D., Mourão-Sá, D., Joffre, O. P., Schulz, O., Rogers, N. C., Pennington, D. J., Carlyle, J. R. et al., Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. J. Clin. Invest. 2008. 118: 20982110.
  • 10
    Soares, H., Waechter, H., Glaichenhaus, N., Mougneau, E., Yagita, H., Mizenina, O., Dudziak, D. et al., A subset of dendritic cells induces CD4+ T cells to produce IFN-gamma by an IL-12-independent but CD70-dependent mechanism in vivo. J. Exp. Med. 2007. 204: 10951106.
  • 11
    Trumpfheller, C., Finke, J. S., Lopez, C. B., Moran, T. M., Moltedo, B., Soares, H., Huang, Y. et al., Intensified and protective CD4+ T cell immunity in mice with anti-dendritic cell HIV gag fusion antibody vaccine. J. Exp. Med. 2006. 203: 607617.
  • 12
    Kretschmer, K., Apostolou, I., Hawiger, D., Khazaie, K., Nussenzweig, M. C. and von Boehmer, H., Inducing and expanding regulatory T cell populations by foreign antigen. Nat. Immunol. 2005. 6: 12191227.
  • 13
    Mahnke, K., Qian, Y., Knop, J. and Enk, A. H., Induction of CD4+/CD25+ regulatory T cells by targeting of antigens to immature dendritic cells. Blood 2003. 101: 48624869.
  • 14
    Yamazaki, S., Dudziak, D., Heidkamp, G. F., Fiorese, C., Bonito, A. J., Inaba, K., Nussenzweig, M. C. et al., CD8+CD205+ splenic dendritic cells are specialized to induce Foxp3+ regulatory T cells. J. Immunol. 2008. 181: 69236933.
  • 15
    Villadangos, J. A. and Schnorrer, P., Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat. Rev. Immunol. 2007. 7: 543555.
  • 16
    Merad, M. and Manz, M. G., Dendritic cell homeostasis. Blood 2009. 113: 34183427.
  • 17
    Caminschi, I., Proietto, A. I., Ahmet, F., Kitsoulis, S., Shin Teh, J., Lo, J. C., Rizzitelli, A. et al., The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood 2008. 112: 32643273.
  • 18
    Huysamen, C., Willment, J. A., Dennehy, K. M. and Brown, G. D., CLEC9A is a novel activation C-type lectin-like receptor expressed on BDCA3+ dendritic cells and a subset of monocytes. J. Biol. Chem. 2008. 283: 1669316701.
  • 19
    Galibert, L., Diemer, G. S., Liu, Z., Johnson, R. S., Smith, J. L., Walzer, T., Comeau, M. R. et al., Nectin-like protein 2 defines a subset of T-cell zone dendritic cells and is a ligand for class-I-restricted T-cell-associated molecule. J. Biol. Chem. 2005. 280: 2195521964.
  • 20
    Sancho, D., Joffre, O. P., Keller, A. M., Rogers, N. C., Martínez, D., Hernanz-Falcón, P., Rosewell, I. et al., Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 2009. 458: 899903.
  • 21
    Dudziak, D., Kamphorst, A. O., Heidkamp, G. F., Buchholz, V. R., Trumpfheller, C., Yamazaki, S., Cheong, C. et al., Differential antigen processing by dendritic cell subsets in vivo. Science. 2007. 315: 107111.
  • 22
    Boes, M., Bertho, N., Cerny, J., Op den Brouw, M., Kirchhausen, T. and Ploegh, H., T cells induce extended class II MHC compartments in dendritic cells in a Toll-like receptor-dependent manner. J. Immunol. 2003. 171: 40814088.
  • 23
    Longhi, M. P., Trumpfheller, C., Idoyaga, J., Caskey, M., Matos, I., Kluger, C., Salazar, A. M. et al., Dendritic cells require a systemic type I interferon response to mature and induce CD4+ Th1 immunity with poly IC as adjuvant. J. Exp. Med. 2009. 206: 15891602.
  • 24
    Leibundgut-Landmann, S., Gross, O., Robinson, M. J., Osorio, F., Slack, E. C., Tsoni, S. V., Schweighoffer, E. et al., Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat. Immunol. 2007. 8: 630638.
  • 25
    Leibundgut-Landmann, S., Osorio, F., Brown, G. D. and Reis e Sousa, C., Stimulation of dendritic cells via the dectin-1/Syk pathway allows priming of cytotoxic T-cell responses. Blood 2008. 112: 49714980.
  • 26
    Schnorrer, P., Behrens, G. M., Wilson, N. S., Pooley, J. L., Smith, C. M., El-Sukkari, D., Davey, G. et al., The dominant role of CD8+ dendritic cells in cross-presentation is not dictated by antigen capture. Proc. Natl. Acad. Sci. USA 2006. 103: 1072910734.
  • 27
    Scheinecker, C., McHugh, R., Shevach, E. M. and Germain, R. N., Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J. Exp. Med. 2002. 196: 10791090.
  • 28
    Boonstra, A., Asselin-Paturel, C., Gilliet, M., Crain, C., Trinchieri, G., Liu, Y. J. and O'Garra, A., Flexibility of mouse classical and plasmacytoid-derived dendritic cells in directing T helper type 1 and 2 cell development: dependency on antigen dose and differential toll-like receptor ligation. J. Exp. Med. 2003. 197: 101109.
  • 29
    Manickasingham, S. P., Edwards, A. D., Schulz, O. and Reis e Sousa, C., The ability of murine dendritic cell subsets to direct T helper cell differentiation is dependent on microbial signals. Eur. J. Immunol. 2003. 33: 101107.
  • 30
    Chen, W., Jin, W., Hardegen, N., Lei, K. J., Li, L., Marinos, N., McGrady, G. et al., Conversion of peripheral CD4+CD25- naïve T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 2003. 198: 18751886.
  • 31
    Coombes, J. L., Siddiqui, K. R., Arancibia-Cárcamo, C. V., Hall, J., Sun, C. M., Belkaid, Y. and Powrie, F., A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J. Exp. Med. 2007. 204: 17571764.
  • 32
    Guilliams, M., Crozat, K., Henri, S., Tamoutounour, S., Grenot, P., Devilard, E., de Bovis, B. et al., Skin-draining lymph nodes contain dermis-derived CD103- dendritic cells that constitutively produce retinoic acid and induce Foxp3+ regulatory T cells. Blood. 2010. 115: 19581968.
  • 33
    Battaglia, M., Stabilini, A. and Roncarolo, M. G., Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood 2005. 105: 47434748.
  • 34
    Maldonado-López, R., De Smedt, T., Michel, P., Godfroid, J., Pajak, B., Heirman, C., Thielemans, K. et al., CD8alpha+ and CD8alpha- subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J. Exp. Med. 1999. 189: 587592.
  • 35
    Perrigoue, J. G., Saenz, S. A., Siracusa, M. C., Allenspach, E. J., Taylor, B. C., Giacomin, P. R., Nair, M. G. et al., MHC class II-dependent basophil-CD4+ T cell interactions promote T(H)2 cytokine-dependent immunity. Nat. Immunol. 2009. 10: 697705.
  • 36
    Sokol, C. L., Chu, N. Q., Yu, S., Nish, S. A., Laufer, T. M. and Medzhitov, R., Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat. Immunol. 2009. 10: 713720.
  • 37
    Yoshimoto, T., Yasuda, K., Tanaka, H., Nakahira, M., Imai, Y., Fujimori, Y. and Nakanishi, K., Basophils contribute to T(H)2-IgE responses in vivo via IL-4 production and presentation of peptide-MHC class II complexes to CD4+ T cells. Nat. Immunol. 2009. 10: 706712.
  • 38
    Cella, M., Salio, M., Sakakibara, Y., Langen, H., Julkunen, I. and Lanzavecchia, A., Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J. Exp. Med. 1999. 189: 821829.
  • 39
    Corbett, A. J., Caminschi, I., McKenzie, B. S., Brady, J. L., Wright, M. D., Mottram, P. L., Hogarth, P. M. et al., Antigen delivery via two molecules on the CD8- dendritic cell subset induces humoral immunity in the absence of conventional “danger”. Eur. J. Immunol. 2005. 35: 28152825.
  • 40
    He, L. Z., Crocker, A., Lee, J., Mendoza-Ramirez, J., Wang, X. T., Vitale, L. A., O'Neill, T. et al., Antigenic targeting of the human mannose receptor induces tumor immunity. J. Immunol. 2007. 178: 62596267.
  • 41
    Robbins, S. H., Walzer, T., Dembélé, D., Thibault, C., Defays, A., Bessou, G., Xu, H. et al., Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biol. 2008. 9: R17.