SEARCH

SEARCH BY CITATION

References

  • 1
    World Health Organization, Global Tuberculosis Control: Surveillance, Planning, Financing. WHO report, Geneva (WHO/HTM/TB/2007.376) 2007.
  • 2
    Ottenhoff, T. H. M., Overcoming the global crisis: “yes, we can”, but also for TB…….? Eur. J. Immunol. 2009. 38: 20142020.
  • 3
    Flynn, J. L., Chan, J., Triebold, K. J., Dalton, D. K., Stewart, T. A. and Bloom, B. R., An essential role for interferon γ in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 1993. 178: 22492254.
  • 4
    Newport, M. J., Huxley, C. M., Huston, S., Hawrylowicz, C. M., Oostra, B. A., Williamson, R. and Levin, M., A mutation in the interferon-γ receptor gene and susceptibility to mycobacterial infection. N. Engl. J. Med. 1996. 335: 19411949.
  • 5
    Mittrucker, H. W., Steinhoff, U., Kohler, A., Krause, M., Lazar, D., Mex, P., Miekley, D. and Kaufmann, S. H., Poor correlation between BCG vaccination-induced T cell responses and protection against tuberculosis. Proc. Natl. Acad. Sci. USA 2007. 104: 1243412439.
  • 6
    Romano, M., D'Souza, S., Adnet, P. Y., Laali, R., Jurion, F., Palfliet, K. and Huygen, K., Priming but not boosting with plasmid DNA encoding mycolyl-transferase Ag85A from Mycobacterium tuberculosis increases the survival time of Mycobacterium bovis BCG vaccinated mice against low dose intravenous challenge with M. tuberculosis H37Rv. Vaccine 2006. 24: 33533364.
  • 7
    Johnson, L., Gough, J., Spencer, Y., Hewinson, G., Vordermeier, M. and Wangoo, A., Immunohistochemical markers augment evaluation of vaccine efficacy and disease severity in bacillus Calmette-Guerin (BCG) vaccinated cattle challenged with Mycobacterium bovis. Vet. Immunol. Immunopathol. 2006.111: 219229.
  • 8
    Soares, A. P., Scriba, T. J., Joseph, S., Harbacheuski, R., Murray, R. A., Gelderbloem, S. J., Hawkridge, A. et al., Bacillus Calmette-Guérin vaccination of human newborns induces T cells with complex cytokine and phenotypic profiles. J. Immunol. 2008.180: 35693577.
  • 9
    Ottenhoff, T. H., Verreck, F. A., Lichtenauer-Kaligis, E. G., Hoeve, M. A., Sanal, O. and van Dissel, J. T., Genetics, cytokines and human infectious disease: lessons from weakly pathogenic mycobacteria and salmonellae. Nat. Genet. 2002. 32: 97105.
  • 10
    Pantaleo, G. and Harari, A., Functional signatures in antiviral T-cell immunity for monitoring virus-associated diseases. Nat. Rev. Immunol. 2006. 6: 417423.
  • 11
    Darrah, P. A., Patel, D. T., De Luca, P. M., Lindsay, R. W., Davey, D. F., Flynn, B. J., Hoff, S. T. et al., Multifunctional Th1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat. Med. 2007. 13: 843850.
  • 12
    Beveridge, N. E., Price, D. A., Casazza, J. P., Pathan, A. A., Sander, C. R., Asher, T. E., Ambrozak, D. R. et al., Immunisation with BCG and recombinant MVA85A induces long-lasting, polyfunctional Mycobacterium tuberculosis-specific CD4+memory T lymphocyte populations. Eur. J. Immunol. 2007. 37: 30893100.
  • 13
    Forbes, E. K., Sander, C., Ronan, E. O., McShane, H., Hill, A. V., Beverley, P. C. and Tchilian, E. Z., Multifunctional, high-level cytokine-producing Th1 cells in the lung, but not spleen, correlate with protection against Mycobacterium tuberculosis aerosol challenge in mice. J. Immunol. 2008. 181: 49554964.
  • 14
    Mueller, H. A. K., Detjen, S. D., Schuck, A., Gutschmidt,U., Wahn, K., Magdorf, S., Kaufmann, H. and Jacobsen, M., Mycobacterium tuberculosis-specific CD4+, IFN-γ+, and TNF-α+ multifunctional memory T cells coexpress GM-CSF. Cytokine 2008. 43: 143148.
  • 15
    Day, C. L., Mkhwanazi, N., Reddy, S., Mncube, Z., Van der Stok, M., Klenerman, P. and Walker, B. D., Detection of polyfunctional Mycobacterium tuberculosis-specific T cells and association with viral load in HIV-1 infected persons. J. Infect. Dis. 2008. 197: 990999.
  • 16
    Kalsdorf, B., Scriba, T. J., Wood, K., Day, C. L., Dheda, K., Dawson, R., Hanekom, W. A. et al., HIV-1 infection impairs the bronchoalveolar T-cell response to mycobacteria. Am. J. Respir. Crit. Care Med. 2009. 180: 12621270.
  • 17
    Winkler, S., Necek, M., Winkler, H., Adegnika, A. A., Perkmann, T., Ramharter, M. and Kremsner, P. G., Increased specific T cell cytokine responses in patients with active pulmonary tuberculosis from Central Africa. Microbes Infect. 2005. 7: 11611169.
  • 18
    Millington, K. A., Innes, J. A., Hackforth, S., Hinks, T. S., Deeks, J. J., Dosanjh, D. P., Guyot-Revol, V. et al., Dynamic relationship between IFN-γ and IL-2 profile of Mycobacterium tuberculosis-specific T cells and antigen load. J. Immunol. 2007. 178: 52175226.
  • 19
    Harari, A., Petitpierre, S., Vallelian, F. and Pantaleo, G., Skewed representation of functionally distinct populations of virus-specific CD4+T cells in HIV-1-infected subjects with progressive disease: changes after antiretroviral therapy. Blood 2004. 103: 966972.
  • 20
    Betts, M. R., Nason, M. C., West, M. S., De Rosa, S. C., Migueles, S. A., Abraham, J. and Lederman, M. M., HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+T cells. Blood 2006.107: 47814789.
  • 21
    Leyten, E. M., Arend, S. M., Prins, C., Cobelens, F. G., Ottenhoff, T. H. and van Dissel, J. T., Discrepancy between Mycobacterium tuberculosis-specific gamma interferon release assays using short and prolonged in vitro incubation. Clin. Vaccine Immunol. 2007. 14: 880885.
  • 22
    Younes, S. A., Yassine-Diab, B., Dumont, A. R., Boulassel, M. R., Grossman, Z., Routy, J. P. and Sekaly, R. P., HIV-1 viremia prevents the establishment of interleukin 2-producing HIV-specific memory CD4+T cells endowed with proliferative capacity. J. Exp. Med. 2003. 198: 19091922.
  • 23
    Duvall, M. G., Precopio, M. L., Ambrozak, D. A., Jaye, A., McMichael, A. J., Whittle, H. C., Roederer, M. et al., Polyfunctional T cell responses are a hallmark of HIV-2 infection. Eur. J. Immunol. 2008.38: 350363.
  • 24
    Kamath, A. T., Rochat, A. F., Valenti, M. P., Agger, E. M., Lingnau, K., Andersen, P., Lambert, P. H. et al., Adult-like anti-mycobacterial T cell and in vivo dendritic cell responses following neonatal immunization with Ag85B-ESAT-6 in the IC3 adjuvant. PLoS ONE 2008. 3: e3683.
  • 25
    Lindenstrøm, T., Agger, E. M., Korsholm, K. S., Darrah, P. A., Aagaard, C., Seder, R. A., Rosenkrands, I. et al., Tuberculosis subunit vaccination provides long-term protective immunity characterized by multifunctional CD4+memory T cells. J. Immunol. 2009. 182: 80478055.
  • 26
    Sutherland, J. S., Adetifa, I. M., Hill, P. C., Adegbola, R. A. and Ota, M. O., Pattern and diversity of cytokine production differentiates between Mycobacterium tuberculosis infection and disease. Eur. J. Immunol. 2009. 39: 723729.
  • 27
    Andersen, P. and Smedegaard, B., CD4+T-cell subsets that mediate immunological memory to Mycobacterium tuberculosis infection in mice. Infect. Immun. 2000. 68: 621629.
  • 28
    Bell, E. B. and Westermann, J., CD4+memory T cells on trial: immunological memory without a memory T cell. Trends Immunol. 2008. 29: 405411.
  • 29
    Godkin, A. J., Thomas, H. C. and Openshaw, P. J., Evolution of epitope-specific memory CD4+T cells after clearance of hepatitis C virus. J. Immunol. 2002. 169: 22102214.
  • 30
    Lanzavecchia, A. and Sallusto, F., Understanding the generation and function of memory T cell subsets. Curr. Opin. Immunol. 2005. 7: 326332.
  • 31
    Seder, R. A., Darrah, P. A. and Roederer, M., T-cell quality in memory and protection: implications for vaccine design. Nat. Rev. Immunol. 2008. 8: 247258.
  • 32
    Weiner, H. L., The mucosal milieu creates tolerogenic dendritic cells and TR1 and TH3 regulatory cells. Nat. Immunol. 2001. 2: 671672.
  • 33
    Zeller, J. C., Panoskaltsis-Mortari, A., Murphy, W. J., Ruscetti, F. W., Narula, S., Roncarolo, M. G. and Blazar, B. R., Induction of CD4+T cell alloantigenspecific hyporesponsiveness by IL-10 and TGF-β. J. Immunol. 1999. 163: 36843691.
  • 34
    Mills, K. H., Regulatory T cells: friend or foe in immunity to infection? Nat. Rev. Immunol. 2004. 4: 841855.
  • 35
    Belkaid, Y., Rouse, B. T., Natural regulatory T cells in infectious disease. Nat. Immunol. 2005. 6: 353360.
  • 36
    Chen, X., Zhou, B., Li, M., Deng, Q., Wu, X., Le, X., Wu, C. et al., CD4+CD25+FoxP3+ regulatory T cells suppress Mycobacterium tuberculosis immunity in patients with active disease. Clin. Immunol. 2007. 123: 5059.
  • 37
    Guyot-Revol, V., Innes, J. A., Hackforth, S., Hinks, T. and Lalvani, A., Regulatory T cells are expanded in blood and disease sites in patients with tuberculosis. Am. J. Respir. Crit. Care Med. 2006. 173: 803810.
  • 38
    Hougardy, J. M., Place, S., Hildebrand, M., Drowart, A., Debrie, A. S., Locht, C. and Mascart, F., Regulatory T cells depress immune responses to protective antigens in active tuberculosis. Am. J. Respir. Crit. Care Med. 2007. 176: 409416.
  • 39
    Hougardy, J. M., Verscheure, V., Locht, C. and Mascart, F., In vitro expansion of CD4+CD25highFoxP3+CD127low/-regulatory T cells from peripheral blood lymphocytes of healthy Mycobacterium tuberculosis-infected humans. Microbes Infect. 2007. 9: 13251332.
  • 40
    Roberts, T., Beyers, N., Aguirre, A. and Walzl, G., Immunosuppression during active tuberculosis is characterized by decreased interferongamma production and CD25 expression with elevated forkhead box P3, transforming growth factor-beta, and interleukin-4 mRNA levels. J. Infect. Dis. 2007. 195: 870878.
  • 41
    Chiacchio, T., Casetti, R., Butera, O., Vanini, V., Carrara, S., Girardi, E., and Di Mitri, D., Characterization of regulatory T cells identified as CD4+CD25highCD39+ in patients with active tuberculosis. Clin. Exp. Immunol. 2009. 156: 463470.
  • 42
    Diagnostic standards and classification of tuberculosis in adults and children: this official statement of the American Thoracic Society and the Centers for Disease Control and Prevention was adopted by the ATS Board of Directors, July (1999). This statement was endorsed by the Council of the Infectious Disease Society of America, September (1999). Am. J. Respir. Crit. Care Med. 2000. 161: 13761395.
  • 43
    Menzies, D., Interpretation of repeated tuberculin tests: boosting, conversion and reversion. Am. J. Respir. Crit. Care Med. 1999. 159: 1521.
  • 44
    Richeldi, L., An update on the diagnosis of tuberculosis infection. Am. J. Respir. Crit. Care Med. 2006.174: 736742.
  • 45
    Menzies, D., Pai, M. and Comstock, G., Meta-analysis: new tests for the diagnosis of latent tuberculosis infection: areas of uncertainty and recommendations for research. Ann. Intern. Med. 2007. 146: 340354.
  • 46
    Demissie, A., Leyten, E. M., Abebe, M., Wassie, L., Aseffa, A., Abate, G., Fletcher, H. et al., Recognition of stage-specific mycobacterial antigens differentiates between acute and latent infections with Mycobacterium tuberculosis. Clin. Vaccine Immunol. 2006. 13: 179186.
  • 47
    Perfetto, S. P., Chattopadhyay, P. K., Lamoreaux, L., Nguyen, R., Ambrozak, D., Koup, R. A. and Roederer, M., Amine reactive dyes: an effective tool to discriminate live and dead cells in polychromatic flow cytometry. J. Immunol. Methods 2006. 313: 199208.
  • 48
    Caccamo, N., Guggino, G., Meraviglia, S., Gelsomino, G., Di Carlo, P., Titone, L., Bocchino, M. et al., Analysis of Mycobacterium tuberculosis-specific CD8+T cells in patients with active tuberculosis and in individuals with latent infection. PLoS ONE 2009. 4: e5528.