SEARCH

SEARCH BY CITATION

References

  • 1
    Holt, P. G., Strickland, D. H., Wikstrom, M. E. and Jahnsen, F. L., Regulation of immunological homeostasis in the respiratory tract. Nat. Rev. Immunol. 2008. 8: 142152.
  • 2
    GeurtsvanKessel, C. H. and Lambrecht, B. N., Division of labor between dendritic cell subsets of the lung. Mucosal. Immunol. 2008. 1: 442450.
  • 3
    von Garnier, C., Filgueira, L., Wikstrom, M., Smith, M., Thomas, J. A., Strickland, D. H., Holt, P. G. and Stumbles, P. A., Anatomical location determines the distribution and function of dendritic cells and other APCs in the respiratory tract. J. Immunol. 2005. 175: 16091618.
  • 4
    Sung, S. S., Fu, S. M., Rose, C. E., Jr., Gaskin, F., Ju, S. T. and Beaty, S. R., A major lung CD103 (alphaE)-beta7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins. J. Immunol. 2006. 176: 21612172.
  • 5
    Jahnsen, F. L., Strickland, D. H., Thomas, J. A., Tobagus, I. T., Napoli, S., Zosky, G. R., Turner, D. J. et al., Accelerated antigen sampling and transport by airway mucosal dendritic cells following inhalation of a bacterial stimulus. J. Immunol. 2006. 177: 58615867.
  • 6
    Bedoret, D., Wallemacq, H., Marichal, T., Desmet, C., Quesada Calvo, F., Henry, E., Closset, R. et al., Lung interstitial macrophages alter dendritic cell functions to prevent airway allergy in mice. J. Clin. Invest. 2009. 119: 37233738.
  • 7
    Lagranderie, M., Nahori, M. A., Balazuc, A. M., Kiefer-Biasizzo, H., Lapa e Silva, J. R., Milon, G., Marchal, G. et al., Dendritic cells recruited to the lung shortly after intranasal delivery of Mycobacterium bovis BCG drive the primary immune response towards a type 1 cytokine production. Immunology 2003. 108: 352364.
  • 8
    Vermaelen, K. and Pauwels, R., Accurate and simple discrimination of mouse pulmonary dendritic cell and macrophage populations by flow cytometry: methodology and new insights. Cytometry A 2004. 61: 170177.
  • 9
    Gorvel, J. P., Brucella: a Mr “Hide” converted into Dr Jekyll. Microbes Infect. 2008. 10: 10101013.
  • 10
    Ko, J. and Splitter, G. A., Molecular host-pathogen interaction in brucellosis: current understanding and future approaches to vaccine development for mice and humans. Clin. Microbiol. Rev. 2003. 16: 6578.
  • 11
    Huang, L. Y., Aliberti, J., Leifer, C. A., Segal, D. M., Sher, A., Golenbock, D. T. and Golding, B., Heat-killed Brucella abortus induces TNF and IL-12p40 by distinct MyD88-dependent pathways: TNF, unlike IL-12p40 secretion, is Toll-like receptor 2 dependent. J. Immunol. 2003. 171: 14411446.
  • 12
    Campos, M. A., Rosinha, G. M., Almeida, I. C., Salgueiro, X. S., Jarvis, B. W., Splitter, G. A., Qureshi, N. et al., Role of Toll-like receptor 4 in induction of cell-mediated immunity and resistance to Brucella abortus infection in mice. Infect. Immun. 2004. 72: 176186.
  • 13
    Huang, L. Y., Ishii, K. J., Akira, S., Aliberti, J. and Golding, B., Th1-like cytokine induction by heat-killed Brucella abortus is dependent on triggering of TLR9. J. Immunol. 2005. 175: 39643970.
  • 14
    Weiss, D. S., Takeda, K., Akira, S., Zychlinsky, A. and Moreno, E., MyD88, but not toll-like receptors 4 and 2, is required for efficient clearance of Brucella abortus. Infect. Immun. 2005. 73: 51375143.
  • 15
    Barquero-Calvo, E., Chaves-Olarte, E., Weiss, D. S., Guzman-Verri, C., Chacon-Diaz, C., Rucavado, A., Moriyon, I. and Moreno, E., Brucella abortus uses a stealthy strategy to avoid activation of the innate immune system during the onset of infection. PLoS One 2007. 2: e631.
  • 16
    Copin, R., De Baetselier, P., Carlier, Y., Letesson, J. J. and Muraille, E., MyD88-dependent activation of B220-CD11b+LY-6C+dendritic cells during Brucella melitensis infection. J. Immunol. 2007. 178: 51825191.
  • 17
    Cirl, C., Wieser, A., Yadav, M., Duerr, S., Schubert, S., Fischer, H., Stappert, D. et al., Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. Nat. Med. 2008. 14: 399406.
  • 18
    Salcedo, S. P., Marchesini, M. I., Lelouard, H., Fugier, E., Jolly, G., Balor, S., Muller, A. et al., Brucella control of dendritic cell maturation is dependent on the TIR-containing protein Btp1. PLoS Pathog. 2008. 4: e21.
  • 19
    Ganz, T., Gabayan, V., Liao, H. I., Liu, L., Oren, A., Graf, T. and Cole, A. M., Increased inflammation in lysozyme M-deficient mice in response to Micrococcus luteus and its peptidoglycan. Blood 2003. 101: 23882392.
  • 20
    Jakubzick, C., Tacke, F., Llodra, J., van Rooijen, N. and Randolph, G. J., Modulation of dendritic cell trafficking to and from the airways. J. Immunol. 2006. 176: 35783584.
  • 21
    Salcedo, S. P. and Gorvel, J. P., Brucella, a perfect trojan horse in phagocytes, in: Russell, D. G. and Gordon, S. (Eds.) Phagocyte-Pathogen Interactions. ASM Press, Washington, DC 2009.
  • 22
    Kirby, A. C., Coles, M. C. and Kaye, P. M., Alveolar macrophages transport pathogens to lung draining lymph nodes. J. Immunol. 2009. 183: 19831989.
  • 23
    Coburn, B., Grassl, G. A. and Finlay, B. B., Salmonella, the host and disease: a brief review. Immunol. Cell Biol. 2007. 85: 112118.
  • 24
    Thepen, T., Van Rooijen, N. and Kraal, G., Alveolar macrophage elimination in vivo is associated with an increase in pulmonary immune response in mice. J. Exp. Med. 1989. 170: 499509.
  • 25
    Holt, P. G., Oliver, J., Bilyk, N., McMenamin, C., McMenamin, P. G., Kraal, G. and Thepen, T., Downregulation of the antigen presenting cell function(s) of pulmonary dendritic cells in vivo by resident alveolar macrophages. J. Exp. Med. 1993. 177: 397407.
  • 26
    McGill, J., Van Rooijen, N. and Legge, K. L., Protective influenza-specific CD8 T cell responses require interactions with dendritic cells in the lungs. J. Exp. Med. 2008. 205: 16351646.
  • 27
    Serbina, N. V., Salazar-Mather, T. P., Biron, C. A., Kuziel, W. A. and Pamer, E. G., TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 2003. 19: 5970.
  • 28
    Celli, J., Surviving inside a macrophage: the many ways of Brucella. Res. Microbiol. 2006. 157: 9398.
  • 29
    Heath, W. R. and Carbone, F. R., Dendritic cell subsets in primary and secondary T cell responses at body surfaces. Nat. Immunol. 2009. 10: 12371244.
  • 30
    Guilliams, M., Movahedi, K., Bosschaerts, T., VandenDriessche, T., Chuah, M. K., Herin, M., Acosta-Sanchez, A. et al., IL-10 dampens TNF/inducible nitric oxide synthase-producing dendritic cell-mediated pathogenicity during parasitic infection. J. Immunol. 2009. 182: 11071118.
  • 31
    Serbina, N. V. and Pamer, E. G., Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat. Immunol. 2006. 7: 311317.
  • 32
    Aldridge, J. R., Jr., Moseley, C. E., Boltz, D. A., Negovetich, N. J., Reynolds, C., Franks, J., Brown, S. A. et al., TNF/iNOS-producing dendritic cells are the necessary evil of lethal influenza virus infection. Proc. Natl. Acad. Sci. USA 2009. 106: 53065311.
  • 33
    Lukens, M. V., Kruijsen, D., Coenjaerts, F. E., Kimpen, J. L. and van Bleek, G. M., Respiratory syncytial virus-induced activation and migration of respiratory dendritic cells and subsequent antigen presentation in the lung-draining lymph node. J. Virol. 2009. 83: 72357243.
  • 34
    del Rio, M. L., Rodriguez-Barbosa, J. I., Kremmer, E. and Forster, R., CD103- and CD103+bronchial lymph node dendritic cells are specialized in presenting and cross-presenting innocuous antigen to CD4+and CD8+T cells. J. Immunol. 2007. 178: 68616866.
  • 35
    Hintzen, G., Ohl, L., del Rio, M. L., Rodriguez-Barbosa, J. I., Pabst, O., Kocks, J. R., Krege, J. et al., Induction of tolerance to innocuous inhaled antigen relies on a CCR7-dependent dendritic cell-mediated antigen transport to the bronchial lymph node. J. Immunol. 2006. 177: 73467354.
  • 36
    Legge, K. L. and Braciale, T. J., Accelerated migration of respiratory dendritic cells to the regional lymph nodes is limited to the early phase of pulmonary infection. Immunity 2003. 18: 265277.
  • 37
    Bar-Haim, E., Gat, O., Markel, G., Cohen, H., Shafferman, A. and Velan, B., Interrelationship between dendritic cell trafficking and Francisella tularensis dissemination following airway infection. PLoS Pathog. 2008. 4: e1000211.
  • 38
    Girvan, A., Aldwell, F. E., Buchan, G. S., Faulkner, L. and Baird, M. A., Transfer of macrophage-derived mycobacterial antigens to dendritic cells can induce naive T-cell activation. Scand. J. Immunol. 2003. 57: 107114.
  • 39
    Vermaelen, K. and Pauwels, R., Pulmonary dendritic cells. Am. J. Respir. Crit. Care Med. 2005. 172: 530551.
  • 40
    MacLean, J. A., Xia, W., Pinto, C. E., Zhao, L., Liu, H. W. and Kradin, R. L., Sequestration of inhaled particulate antigens by lung phagocytes. A mechanism for the effective inhibition of pulmonary cell-mediated immunity. Am. J. Pathol. 1996. 148: 657666.
  • 41
    Van Rooijen, N. and Sanders, A., Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J. Immunol. Methods 1994. 174: 8393.
  • 42
    Henri, S., Vremec, D., Kamath, A., Waithman, J., Williams, S., Benoist, C., Burnham, K. et al., The dendritic cell populations of mouse lymph nodes. J. Immunol. 2001. 167: 741748.