SEARCH

SEARCH BY CITATION

References

  • 1
    Aruffo, A., Melnick, M. B., Linsley, P. S. and Seed, B., The lymphocyte glycoprotein CD6 contains a repeated domain structure characteristic of a new family of cell surface and secreted proteins. J. Exp. Med. 1991. 174: 949952.
  • 2
    Aruffo, A., Bowen, M. A., Patel, D. D., Haynes, B. F., Starling, G. C., Gebe, J. A. and Bajorath, J., CD6-ligand interactions: a paradigm for SRCR domain function? Immunol. Today 1997. 18: 498504.
  • 3
    De Jager, P. L., Jia, X., Wang, J., de Bakker, P. I., Ottoboni, L., Aggarwal, N. T., Piccio, L. et al., Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat. Genet. 2009. 41: 776782.
  • 4
    Johnson, B. A., Wang, J., Taylor, E. M., Caillier, S. J., Herbert, J., Khan, O. A., Cross, A. H. et al., Multiple sclerosis susceptibility alleles in African Americans. Genes Immun. 2011. 11: 343350
  • 5
    Hafler, D. A., Fallis, R. J., Dawson, D. M., Schlossman, S. F., Reinherz, E. L. and Weiner, H. L., Immunologic responses of progressive multiple sclerosis patients treated with an anti-T-cell monoclonal antibody, anti-T12. Neurology 1986. 36: 777784.
  • 6
    Gangemi, R. M., Swack, J. A., Gaviria, D. M. and Romain, P. L., Anti-T12, an anti-CD6 monoclonal antibody, can activate human T lymphocytes. J. Immunol. 1989. 143: 24392447.
  • 7
    Osorio, L. M., Garcia, C. A., Jondal, M. and Chow, S. C., The anti-CD6 mAb, IOR-T1, defined a new epitope on the human CD6 molecule that induces greater responsiveness in T cell receptor/CD3-mediated T cell proliferation. Cell. Immunol. 1994. 154: 123133.
  • 8
    Gimferrer, I., Calvo, M., Mittelbrunn, M., Farnós, M., Sarrias, M. R., Enrich, C., Vives, J. et al., Relevance of CD6-mediated interactions in T cell activation and proliferation. J. Immunol. 2004. 173: 22622270.
  • 9
    Hassan, N. J., Barclay, A. N. and Brown, M. H., Optimal T cell activation requires the engagement of CD6 and CD166. Eur. J. Immunol. 2004. 34: 930940.
  • 10
    Zimmerman, A. W., Joosten, B., Torensma, R., Parnes, J. R., van Leeuwen, F. N. and Figdor, C. G., Long-term engagement of CD6 and ALCAM is essential for T-cell proliferation induced by dendritic cells. Blood 2006. 107: 32123220.
  • 11
    Wee, S., Schieven, G. L., Kirihara, J. M., Tsu, T. T., Ledbetter, J. A. and Aruffo, A., Tyrosine phosphorylation of CD6 by stimulation of CD3: augmentation by the CD4 and CD2 coreceptors. J. Exp. Med. 1993. 177: 219223.
  • 12
    Robinson, W. H., Neuman de Vegvar, H. E., Prohaska, S. S., Rhee, J. W. and Parnes, J. R., Human CD6 possesses a large, alternatively spliced cytoplasmic domain. Eur. J. Immunol. 1995. 25: 27652769.
  • 13
    Castro, M. A. A., Nunes, R. J., Oliveira, M. I., Tavares, P. A., Simões, C., Parnes, J. R., Moreira, A. and Carmo, A. M., OX52 is the rat homologue of CD6: evidence for an effector function in the regulation of CD5 phosphorylation. J. Leukoc. Biol. 2003. 73: 183190.
  • 14
    Gimferrer, I., Ibáñez, A., Farnós, M., Sarrias, M. R., Fenutría, R., Roselló, S. Zimmermann, P. et al., The lymphocyte receptor CD6 interacts with syntenin-1, a scaffolding protein containing PDZ domains. J. Immunol. 2005. 175: 14061414.
  • 15
    Gimferrer, I., Farnós, M., Calvo, M., Mittelbrunn, M., Enrich, C., Sánchez-Madrid, F., Vives, J. and Lozano, F., The accessory molecules CD5 and CD6 associate on the membrane of lymphoid T cells. J. Biol. Chem. 2003. 278: 85648571.
  • 16
    Gary-Gouy, H., Bruhns, P., Schmitt, C., Dalloul, A., Daëron, M. and Bismuth, G., The pseudo-immunoreceptor tyrosine-based activation motif of CD5 mediates its inhibitory action on B-cell receptor signaling. J. Biol. Chem. 2000. 275: 548556.
  • 17
    Gary-Gouy, H., Harriague, J., Dalloul, A., Donnadieu, E. and Bismuth, G., CD5-negative regulation of B cell receptor signaling pathways originates from tyrosine residue Y429 outside an immunoreceptor tyrosine-based inhibitory motif. J. Immunol. 2002. 168: 232239.
  • 18
    Tarakhovsky, A., Kanner, S. B., Hombach, J., Ledbetter, J. A., Müller, W., Killeen, N. and Rajewsky, K., A role for CD5 in TCR-mediated signal transduction and thymocyte selection. Science 1995. 269: 535537.
  • 19
    Peña-Rossi, C., Zuckerman, L. A., Strong, J., Kwan, J., Ferris, W., Chan, S., Tarakhovsky, A. et al., Negative regulation of CD4 lineage development and responses by CD5. J. Immunol. 1999. 163: 64946501.
  • 20
    Bowen, M. A., Patel, D. D., Li, X., Modrell, B., Malacko, A. R., Wang, W. C., Marquardt, H. et al., Cloning, mapping, and characterization of activated leukocyte-cell adhesion molecule (ALCAM), a CD6 ligand. J. Exp. Med. 1995. 181: 22132220.
  • 21
    Castro, M. A. A., Oliveira, M. I., Nunes, R. J., Fabre, S., Barbosa, R., Peixoto, A., Brown, M. H. et al., Extracellular isoforms of CD6 generated by alternative splicing regulate targeting of CD6 to the immunological synapse. J. Immunol. 2007. 178: 43514361.
  • 22
    Harriague, J. and Bismuth, G., Imaging antigen-induced PI3K activation in T cells. Nat. Immunol. 2002. 3: 10901096.
  • 23
    Bowen, M. A., Bajorath, J., D'Egidio, M., Whitney, G. S., Palmer, D., Kobarg, J., Starling, G. C. et al., Characterization of mouse ALCAM (CD166): the CD6-binding domain is conserved in different homologs and mediates cross-species binding. Eur. J. Immunol. 1997. 27: 14691478.
  • 24
    Ceuppens, J. L. and Baroja, M. L., Monoclonal antibodies to the CD5 antigen can provide the necessary second signal for activation of isolated resting T cells by solid-phase-bound OKT3. J. Immunol. 1986. 137: 18161821.
  • 25
    Imboden, J. B., June, C. H., McCutcheon, M. A. and Ledbetter, J. A., Stimulation of CD5 enhances signal transduction by the T cell antigen receptor. J. Clin. Invest. 1990. 85: 130134.
  • 26
    Hassan, N. J., Simmonds, S. J., Clarkson, N. G., Hanrahan, S., Puklavec, M. J., Bomb, M., Barclay, A. N. and Brown, M. H., CD6 regulates T-cell responses through activation-dependent recruitment of the positive regulator SLP-76. Mol. Cell. Biol. 2006. 26: 67276738.
  • 27
    Nair, P., Melarkode, R., Rajkumar, D. and Montero, E., CD6 synergistic co-stimulation promoting proinflammatory response is modulated without interfering with the activated leucocyte cell adhesion molecule interaction. Clin. Exp. Immunol. 2010. 162: 116130.
  • 28
    Perez-Villar, J. J., Whitney, G. S., Bowen, M. A., Hewgill, D. H., Aruffo, A. A. and Kanner, S. B., CD5 negatively regulates the T-cell antigen receptor signal transduction pathway: involvement of SH2-containing phosphotyrosine phosphatase SHP-1. Mol. Cell. Biol. 1999. 19: 29032912.
  • 29
    Bamberger, M., Santos, A. M., Gonçalves, C. M., Oliveira, M. I., James, J. R., Moreira, A., Lozano, F. et al., A new pathway of CD5 glycoprotein-mediated T cell inhibition dependent on inhibitory phosphorylation of Fyn kinase. J. Biol. Chem. 2011. 286: 3032430336.
  • 30
    Carmo, A. M., Mason, D. W. and Beyers, A. D., Physical association of the cytoplasmic domain of CD2 with the tyrosine kinases p56lck and p59fyn. Eur. J. Immunol. 1993. 23: 21962201.
  • 31
    Nunes, R., Castro, M., Gonçalves, C., Bamberger, M., Pereira, C., Bismuth, G. and Carmo, A., Protein interactions between CD2 and Lck are required for the lipid raft distribution of CD2. J. Immunol. 2008. 180: 988997.
  • 32
    Teh, S. J., Killeen, N., Tarakhovsky, A., Littman, D. R. and Teh, H. S., CD2 regulates the positive selection and function of antigen-specific CD4− CD8+ T cells. Blood 1997. 89: 13081318.
  • 33
    Carmo, A. M., Castro, M. A. A. and Arosa, F. A., CD2 and CD3 associate independently with CD5 and differentially regulate signaling through CD5 in Jurkat T cells. J. Immunol. 1999. 163: 42384245.
  • 34
    Castro, M. A. A., Tavares, P. A., Almeida, M. S., Nunes, R. J., Wright, M. D., Mason, D., Moreira, A. and Carmo, A. M., CD2 physically associates with CD5 in rat T lymphocytes with the involvement of both extracellular and intracellular domains. Eur. J. Immunol. 2002. 32: 15091518.
  • 35
    Robinson, W. H., Prohaska, S. S., Santoro, J. C., Robinson, H. L. and Parnes, J. R., Identification of a mouse protein homologous to the human CD6 T cell surface protein and sequence of the corresponding cDNA. J. Immunol. 1995. 155: 47394748.
  • 36
    Bowen, M. A., Whitney, G. S., Neubauer, M., Starling, G. C., Palmer, D., Zhang, J., Nowak, N. J. et al., Structure and chromosomal location of the human CD6 gene: detection of five human CD6 isoforms. J. Immunol. 1997. 158: 11491156.
  • 37
    Epstein, M. A., Achong, B. G., Barr, Y. M., Zajac, B., Henle, G. and Henle, W., Morphological and virological investigations on cultured Burkitt tumor lymphoblasts (strain Raji). J. Natl. Cancer Inst. 1966. 37: 547559.
  • 38
    Weiss, A., Wiskocil, R. L. and Stobo, J. D., The role of T3 surface molecules in the activation of human T cells: a two-stimulus requirement for IL 2 production reflects events occurring at a pre-translational level. J. Immunol. 1984. 133: 123128.
  • 39
    Lozzio, C. B. and Lozzio, B. B., Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 1975. 45: 321334.
  • 40
    Puck, T. T., Cieciura, S. J. and Robinson, A., Genetics of somatic mammalian cells. III. Long-term cultivation of euploid cells from human and animal subjects. J. Exp. Med. 1958. 108: 945956.
  • 41
    Robinson, A. P., Puklavec, M. and Mason, D. W., MRC OX-52: a rat T-cell antigen. Immunology 1986. 57: 527531.
  • 42
    Bazil, V., Stefanová, I., Hilgert, I., Kristofová, H., Vank, S., Bukovský, A. and Horejsí, V., Monoclonal antibodies against human leucocyte antigens. III. Antibodies against CD45R, CD6, CD44 and two newly described broadly expressed glycoproteins MEM-53 and MEM-102. Folia Biol. 1989. 35: 289297.
  • 43
    McMichael, A. J., Beverly, P. C. L. S. C., Crumpton, M. J., Gilks, W., Gotch, F. M., Hogg, N., Horton, M. et al., Leukocyte Typing. III. White Cell Differentiation Antigens, Oxford University, Oxford 1987.
  • 44
    Aricescu, A. R., Lu, W. and Jones, E. Y., A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr. D Biol. Crystallogr. 2006. 62: 12431250.
  • 45
    Cockett, M. I., Bebbington, C. R. and Yarranton, G. T., High level expression of tissue inhibitor of metalloproteinases in Chinese hamster ovary cells using glutamine synthetase gene amplification. Biotechnology 1990. 8: 662667.
  • 46
    Schatz, P. J., Use of peptide libraries to map the substrate specificity of a peptide-modifying enzyme: a 13 residue consensus peptide specifies biotinylation in Escherichia coli. Biotechnology 1993. 11: 11381143.
  • 47
    Davis, S. J., Ward, H. A., Puklavec, M. J., Willis, A. C., Williams, A. F. and Barclay, A. N., High level expression in Chinese hamster ovary cells of soluble forms of CD4 T lymphocyte glycoprotein including glycosylation variants. J. Biol. Chem. 1990. 265: 1041010418.