SEARCH

SEARCH BY CITATION

References

  • 1
    Tang, Q. and Bluestone, J. A., The Foxp3+regulatory T cell: a jack of all trades, master of regulation. Nat. Immunol. 2008. 9: 239244.
  • 2
    Wei, S., Kryczek, I. and Zou, W., Regulatory T-cell compartmentalization and trafficking. Blood 2006. 108: 426431.
  • 3
    Korn, T., Reddy, J., Gao, W., Bettelli, E., Awasthi, A., Petersen, T. R., Backstrom, B. T. et al., Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat. Med. 2007. 13: 423431.
  • 4
    McGeachy, M. J., Stephens, L. A. and Anderton, S. M., Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+regulatory cells within the central nervous system. J. Immunol. 2005. 175: 30253032.
  • 5
    O'Connor, R. A. and Anderton, S. M., Foxp3+regulatory T cells in the control of experimental CNS autoimmune disease. J. Neuroimmunol. 2008. 193: 111.
  • 6
    Lee, J. H., Kang, S. G. and Kim, C. H., FoxP3+T cells undergo conventional first switch to lymphoid tissue homing receptors in thymus but accelerated second switch to nonlymphoid tissue homing receptors in secondary lymphoid tissues. J. Immunol. 2007. 178: 301311.
  • 7
    Banchereau, J. and Steinman, R. M., Dendritic cells and the control of immunity. Nature 1998. 392: 245252.
  • 8
    Takahashi, T., Kuniyasu, Y., Toda, M., Sakaguchi, N., Itoh, M., Iwata, M., Shimizu, J. and Sakaguchi, S., Immunologic self-tolerance maintained by CD25+CD4+naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 1998. 10: 19691980.
  • 9
    Sakaguchi, S., Naturally arising CD4+regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 2004. 22: 531562.
  • 10
    O'Connor, R. A., Malpass, K. H. and Anderton, S. M., The inflamed central nervous system drives the activation and rapid proliferation of Foxp3+regulatory T cells. J. Immunol. 2007. 179: 958966.
  • 11
    Gartner, D., Hoff, H., Gimsa, U., Burmester, G. R. and Brunner-Weinzierl, M. C., CD25 regulatory T cells determine secondary but not primary remission in EAE: impact on long-term disease progression. J. Neuroimmunol. 2006. 172: 7384.
  • 12
    Tzartos, J. S., Friese, M. A., Craner, M. J., Palace, J., Newcombe, J., Esiri, M. M. and Fugger, L., Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am. J. Pathol. 2008. 172: 146155.
  • 13
    Feger, U., Luther, C., Poeschel, S., Melms, A., Tolosa, E. and Wiendl, H., Increased frequency of CD4+CD25+regulatory T cells in the cerebrospinal fluid but not in the blood of multiple sclerosis patients. Clin. Exp. Immunol. 2007. 147: 412418.
  • 14
    Zozulya, A. L. and Wiendl, H., The role of regulatory T cells in multiple sclerosis. Nat. Clin. Pract. Neurol. 2008. 4: 384398.
  • 15
    Venken, K., Hellings, N., Broekmans, T., Hensen, K., Rummens, J. L. and Stinissen, P., Natural naive CD4+CD25+CD127low regulatory T cell (Treg) development and function are disturbed in multiple sclerosis patients: recovery of memory Treg homeostasis during disease progression. J. Immunol. 2008. 180: 64116420.
  • 16
    Michel, L., Berthelot, L., Pettre, S., Wiertlewski, S., Lefrere, F., Braudeau, C., Brouard, S. et al., Patients with relapsing-remitting multiple sclerosis have normal Treg function when cells expressing IL-7 receptor alpha-chain are excluded from the analysis. J. Clin. Invest. 2008. 118: 34113419.
  • 17
    Kleinewietfeld, M., Puentes, F., Borsellino, G., Battistini, L., Rotzschke, O. and Falk, K., CCR6 expression defines regulatory effector/memory-like cells within the CD25(+)CD4+T-cell subset. Blood 2005. 105: 28772886.
  • 18
    Huang, Y. H., Zozulya, A. L., Weidenfeller, C., Metz, I., Buck, D., Toyka, K. V., Bruck, W. and Wiendl, H., Specific central nervous system recruitment of HLA-G(+) regulatory T cells in multiple sclerosis. Ann. Neurol. 2009. 66: 171183.
  • 19
    Haas, J., Fritzsching, B., Trubswetter, P., Korporal, M., Milkova, L., Fritz, B., Vobis, D. et al., Prevalence of newly generated naive regulatory T cells (Treg) is critical for Treg suppressive function and determines Treg dysfunction in multiple sclerosis. J. Immunol. 2007. 179: 13221330.
  • 20
    Ambrosini, E., Columba-Cabezas, S., Serafini, B., Muscella, A. and Aloisi, F., Astrocytes are the major intracerebral source of macrophage inflammatory protein-3alpha/CCL20 in relapsing experimental autoimmune encephalomyelitis and in vitro. Glia 2003. 41: 290300.
  • 21
    Reboldi, A., Coisne, C., Baumjohann, D., Benvenuto, F., Bottinelli, D., Lira, S., Uccelli, A. et al., C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat. Immunol. 2009. 10: 514523.
  • 22
    Yamazaki, T., Yang, X. O., Chung, Y., Fukunaga, A., Nurieva, R., Pappu, B., Martin-Orozco, N. et al., CCR6 regulates the migration of inflammatory and regulatory T cells. J. Immunol. 2008. 181: 83918401.
  • 23
    Villares, R., Cadenas, V., Lozano, M., Almonacid, L., Zaballos, A., Martinez, A. C. and Varona, R., CCR6 regulates EAE pathogenesis by controlling regulatory CD4+T-cell recruitment to target tissues. Eur. J. Immunol. 2009. 39: 16711681.
  • 24
    Engelhardt, B. and Sorokin, L., The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin. Immunopathol. 2009. 31: 497511.
  • 25
    El Andaloussi, A. and Lesniak, M. S., An increase in CD4+CD25+FOXP3+regulatory T cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme. Neuro. Oncol. 2006. 8: 234243.
  • 26
    Heimberger, A. B., Abou-Ghazal, M., Reina-Ortiz, C., Yang, D. S., Sun, W., Qiao, W., Hiraoka, N. and Fuller, G. N., Incidence and prognostic impact of FoxP3+regulatory T cells in human gliomas. Clin. Cancer Res. 2008. 14: 51665172.
  • 27
    Onishi, Y., Fehervari, Z., Yamaguchi, T. and Sakaguchi, S., Foxp3+natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc. Natl. Acad. Sci. USA 2008. 105: 1011310118.
  • 28
    McDonald, W. I., Compston, A., Edan, G., Goodkin, D., Hartung, H. P., Lublin, F. D., McFarland, H. F. et al., Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann. Neurol. 2001. 50: 121127.
  • 29
    Ortler, S., Leder, C., Mittelbronn, M., Zozulya, A. L., Knolle, P. A., Chen, L., Kroner, A. and Wiendl, H., B7-H1 restricts neuroantigen-specific T cell responses and confines inflammatory CNS damage: implications for the lesion pathogenesis of multiple sclerosis. Eur. J. Immunol. 2008. 38: 17341744.
  • 30
    Weidenfeller, C., Schrot, S., Zozulya, A. and Galla, H. J., Murine brain capillary endothelial cells exhibit improved barrier properties under the influence of hydrocortisone. Brain Res. 2005. 1053: 162174.