• 1
    Engelhardt, B., Molecular mechanisms involved in T cell migration across the blood-brain barrier. J. Neural Transm. 2006. 113: 477485.
  • 2
    Lub, M., van Kooyk, Y. and Figdor, C. G., Ins and outs of LFA-1. Immunol. Today 1995. 16: 479483.
  • 3
    Marski, M., Kandula, S., Turner, J. R. and Abraham, C., CD18 is required for optimal development and function of CD4+CD25+ T regulatory cells. J. Immunol. 2005. 175: 78897897.
  • 4
    Gordon, E. J., Myers, K. J., Dougherty, J. P., Rosen, H. and Ron, Y., Both anti-CD11a (LFA-1) and anti-CD11b (MAC-1) therapy delay the onset and diminish the severity of experimental autoimmune encephalomyelitis. J. Neuroimmunol. 1995. 62: 153160.
  • 5
    Welsh, C. T., Rose, J. W., Hill, K. E. and Townsend, J. J., Augmentation of adoptively transferred experimental allergic encephalomyelitis by administration of a monoclonal antibody specific for LFA-1 alpha. J. Neuroimmunol. 1993. 43: 161167.
  • 6
    Wang, Y., Kai, H., Chang, F., Shibata, K., Tahara-Hanaoka, S., Honda, S., Shibuya, A. and Shibuya, K., A critical role of LFA-1 in the development of Th17 cells and induction of experimental autoimmune encephalomyelytis. Biochem. Biophys. Res. Commun. 2007. 353: 857862.
  • 7
    Dugger, K. J., Zinn, K. R., Weaver, C., Bullard, D. C. and Barnum, S. R., Effector and suppressor roles for LFA-1 during the development of experimental autoimmune encephalomyelitis. J. Neuroimmunol. 2009. 206: 2227.
  • 8
    Korn, T., Anderson, A. C., Bettelli, E. and Oukka, M., The dynamics of effector T cells and Foxp3+ regulatory T cells in the promotion and regulation of autoimmune encephalomyelitis. J. Neuroimmunol. 2007. 191: 5160.
  • 9
    Kirchhoff, D., Frentsch, M., Leclerk, P., Bumann, D., Rausch, S., Hartmann, S., Thiel, A. and Scheffold, A., Identification and isolation of murine antigen-reactive T cells according to CD154 expression. Eur. J. Immunol. 2007. 37: 23702377.
  • 10
    Berlin-Rufenach, C., Otto, F., Mathies, M., Westermann, J., Owen, M. J., Hamann, A. and Hogg, N., Lymphocyte migration in lymphocyte function-associated antigen (LFA)-1-deficient mice. J. Exp. Med. 1999. 189: 14671478.
  • 11
    Laschinger, M., Vajkoczy, P. and Engelhardt, B., Encephalitogenic T cells use LFA-1 for transendothelial migration but not during capture and initial adhesion strengthening in healthy spinal cord microvessels in vivo. Eur. J. Immunol. 2002. 32: 35983606.
  • 12
    Darrah, P. A., Patel, D. T., De Luca, P. M., Lindsay, R. W., Davey, D. F., Flynn, B. J., Hoff, S. T. et al., Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat. Med. 2007. 13: 843850.
  • 13
    Bynoe, M. S., Bonorino, P. and Viret, C., Control of experimental autoimmune encephalomyelitis by CD4+ suppressor T cells: peripheral versus in situ immunoregulation. J. Neuroimmunol. 2007. 191: 6169.
  • 14
    Schmits, R., Kundig, T. M., Baker, D. M., Shumaker, G., Simard, J. J., Duncan, G., Wakeham, A. et al., LFA-1-deficient mice show normal CTL responses to virus but fail to reject immunogenic tumor. J. Exp. Med. 1996. 183: 14151426.
  • 15
    Cannella, B., Cross, A. H. and Raine, C. S., Anti-adhesion molecule therapy in experimental autoimmune encephalomyelitis. J. Neuroimmunol. 1993. 46: 4355.
  • 16
    Bachmann, M. F., McKall-Faienza, K., Schmits, R., Bouchard, D., Beach, J., Speiser, D. E., Mak, T. W. and Ohashi, P. S., Distinct roles for LFA-1 and CD28 during activation of naive T cells: adhesion versus costimulation. Immunity 1997. 7: 549557.
  • 17
    Wang, Y., Shibuya, K., Yamashita, Y., Shirakawa, J., Shibata, K., Kai, H., Yokosuka, T. et al., LFA-1 decreases the antigen dose for T cell activation in vivo. Int. Immunol. 2008. 20: 11191127.
  • 18
    Burmeister, Y., Lischke, T., Dahler, A. C., Mages, H. W., Lam, K. P., Coyle, A. J., Kroczek, R. A. and Hutloff, A., ICOS controls the pool size of effector-memory and regulatory T cells. J. Immunol. 2008. 180: 774782.
  • 19
    Wohler, J., Bullard, D., Schoeb, T. and Barnum, S., LFA-1 is critical for regulatory T cell homeostasis and function. Mol. Immunol. 2009. 46: 24242428.
  • 20
    Onishi, Y., Fehervari, Z., Yamaguchi, T. and Sakaguchi, S., Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc. Natl. Acad. Sci. USA 2008. 105: 1011310118.
  • 21
    Tran, D. Q., Glass, D. D., Uzel, G., Darnell, D. A., Spalding, C., Holland, S. M. and Shevach, E. M., Analysis of adhesion molecules, target cells, and role of IL-2 in human FOXP3+ regulatory T cell suppressor function. J. Immunol. 2009. 182: 29292938.
  • 22
    Lepesant, H., Reggio, H., Pierres, M. and Naquet, P., Mouse thymic epithelial cell lines interact with and select a CD3lowCD4+CD8+ thymocyte subset through an LFA-1-dependent adhesion–de-adhesion mechanism. Int. Immunol. 1990. 2: 10211032.
  • 23
    Sakaguchi, S., Yamaguchi, T., Nomura, T. and Ono, M., Regulatory T cells and immune tolerance. Cell 2008. 133: 775787.
  • 24
    Ding, Z. M., Babensee, J. E., Simon, S. I., Lu, H., Perrard, J. L., Bullard, D. C., Dai, X. Y. et al., Relative contribution of LFA-1 and Mac-1 to neutrophil adhesion and migration. J. Immunol. 1999. 163: 50295038.
  • 25
    Perfetto, S. P., Chattopadhyay, P. K., Lamoreaux, L., Nguyen, R., Ambrozak, D., Koup, R. A. and Roederer, M., Amine reactive dyes: an effective tool to discriminate live and dead cells in polychromatic flow cytometry. J. Immunol. Methods 2006. 313: 199208.