SEARCH

SEARCH BY CITATION

References

  • 1
    Virmani, R., Kolodgie, F. D., Burke, A. P., Finn, A. V., Gold, H. K., Tulenko, T. N., Wrenn, S. P. et al., Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler. Thromb. Vasc. Biol. 2005. 25: 20542061.
  • 2
    Hansson, G. K., Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 2005. 352: 16851695.
  • 3
    Binder, C. J., Chang, M. K., Shaw, P. X., Miller, Y. I., Hartvigsen, K., Dewan, A. and Witztum, J. L., Innate and acquired immunity in atherogenesis. Nat. Med. 2002. 8: 12181226.
  • 4
    van der Wal, A. C., Das, P. K., Bentz van de Berg, D., van der Loos, C. M. and Becker, A. E., Atherosclerotic lesions in humans. In situ immunophenotypic analysis suggesting an immune mediated response. Lab. Invest. 1989. 61: 166170.
  • 5
    Fleiner, M., Kummer, M., Mirlacher, M., Sauter, G., Cathomas, G., Krapf, R. and Biedermann, B. C., Arterial neovascularization and inflammation in vulnerable patients: early and late signs of symptomatic atherosclerosis. Circulation 2004. 110: 28432850.
  • 6
    Robertson, A. K. and Hansson, G. K., T cells in atherogenesis: for better or for worse? Arterioscler. Thromb. Vasc. Biol. 2006. 26: 24212432.
  • 7
    Tabas, I., Williams, K. J. and Boren, J., Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 2007. 116: 18321844.
  • 8
    Doyle, B. and Caplice, N., Plaque neovascularization and antiangiogenic therapy for atherosclerosis. J. Am. Coll. Cardiol. 2007. 49: 20732080.
  • 9
    Newby, A. C., Do metalloproteinases destabilize vulnerable atherosclerotic plaques? Curr. Opin. Lipidol. 2006. 17: 556561.
  • 10
    Lijnen, H. R., Metalloproteinases in development and progression of vascular disease. Pathophysiol. Haemost. Thromb. 2003. 33: 275281.
  • 11
    Major, A. S., Joyce, S. and Van Kaer, L., Lipid metabolism, atherogenesis and CD1-restricted antigen presentation. Trends Mol. Med. 2006. 12: 270278.
  • 12
    Bendelac, A., Savage, P. B. and Teyton, L., The biology of NKT cells. Annu. Rev. Immunol. 2007. 25: 297336.
  • 13
    Major, A. S., Wilson, M. T., McCaleb, J. L., Ru Su, Y., Stanic, A. K., Joyce, S., Van Kaer, L. et al., Quantitative and qualitative differences in proatherogenic NKT cells in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 2004. 24: 23512357.
  • 14
    Nakai, Y., Iwabuchi, K., Fujii, S., Ishimori, N., Dashtsoodol, N., Watano, K., Mishima, T. et al., Natural killer T cells accelerate atherogenesis in mice. Blood 2004. 104: 20512059.
  • 15
    Tupin, E., Nicoletti, A., Elhage, R., Rudling, M., Ljunggren, H. G., Hansson, G. K. and Berne, G. P., CD1d-dependent activation of NKT cells aggravates atherosclerosis. J. Exp. Med. 2004. 199: 417422.
  • 16
    Aslanian, A. M., Chapman, H. A. and Charo, I. F., Transient role for CD1d-restricted natural killer T cells in the formation of atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 2005. 25: 628632.
  • 17
    Rogers, L., Burchat, S., Gage, J., Hasu, M., Thabet, M., Wilcox, L., Ramsamy, T. A. et al., Deficiency of invariant Valpha14 natural killer T cells decreases atherosclerosis in LDL receptor null mice. Cardiovasc. Res. 2008. 78: 167174.
  • 18
    VanderLaan, P. A., Reardon, C. A., Sagiv, Y., Blachowicz, L., Lukens, J., Nissenbaum, M., Wang, C. R. et al., Characterization of the natural killer T-cell response in an adoptive transfer model of atherosclerosis. Am. J. Pathol. 2007. 170: 11001107.
  • 19
    van Puijvelde, G. H., van Wanrooij, E. J., Hauer, A. D., de Vos, P., van Berkel, T. J. and Kuiper, J., Effect of natural killer T cell activation on the initiation of atherosclerosis. Thromb. Haemost. 2009. 102: 223230.
  • 20
    Melian, A., Geng, Y. J., Sukhova, G. K., Libby, P. and Porcelli, S. A., CD1 expression in human atherosclerosis. A potential mechanism for T cell activation by foam cells. Am. J. Pathol. 1999. 155: 775786.
  • 21
    Stary, H. C., Chandler, A. B., Dinsmore, R. E., Fuster, V., Glagov, S., Insull, W., Jr., Rosenfeld, M. E. et al., A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1995. 92: 13551374.
  • 22
    Exley, M. A., Hou, R., Shaulov, A., Tonti, E., Dellabona, P., Casorati, G., Akbari, O. et al., Selective activation, expansion, and monitoring of human iNKT cells with a monoclonal antibody specific for the TCR alpha-chain CDR3 loop. Eur. J. Immunol. 2008. 38: 17561766.
  • 23
    Montoya, C. J., Pollard, D., Martinson, J., Kumari, K., Wasserfall, C., Mulder, C. B., Rugeles, M. T. et al., Characterization of human invariant natural killer T subsets in health and disease using a novel invariant natural killer T cell-clonotypic monoclonal antibody, 6B11. Immunology 2007. 122: 114.
  • 24
    Godfrey, D. I. and Kronenberg, M., Going both ways: immune regulation via CD1d-dependent NKT cells. J. Clin. Invest. 2004. 114: 13791388.
  • 25
    Jing, Y., Gravenstein, S., Chaganty, N. R., Chen, N., Lyerly, K. H., Joyce, S. and Deng, Y., Aging is associated with a rapid decline in frequency, alterations in subset composition, and enhanced Th2 response in CD1d-restricted NKT cells from human peripheral blood. Exp. Gerontol. 2007. 42: 719732.
  • 26
    Adams, R. H. and Alitalo, K., Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell. Biol. 2007. 8: 464478.
  • 27
    Li, A., Dubey, S., Varney, M. L., Dave, B. J. and Singh, R. K., IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J. Immunol. 2003. 170: 33693376.
  • 28
    Simonini, A., Moscucci, M., Muller, D. W., Bates, E. R., Pagani, F. D., Burdick, M. D. and Strieter, R. M., IL-8 is an angiogenic factor in human coronary atherectomy tissue. Circulation 2000. 101: 15191526.
  • 29
    Halushka, M. K., Cornish, T. C., Lu, J., Selvin, S. and Selvin, E., Creation, validation, and quantitative analysis of protein expression in vascular tissue microarrays. Cardiovasc. Pathol. 19: 136146.
  • 30
    Bobryshev, Y. V. and Lord, R. S., Co-accumulation of dendritic cells and natural killer T cells within rupture-prone regions in human atherosclerotic plaques. J. Histochem. Cytochem. 2005. 53: 781785.
  • 31
    Moulton, K. S., Vakili, K., Zurakowski, D., Soliman, M., Butterfield, C., Sylvin, E., Lo, K. M. et al., Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc. Natl. Acad. Sci. USA 2003. 100: 47364741.
  • 32
    Paulsson, G., Zhou, X., Tornquist, E. and Hansson, G. K., Oligoclonal T cell expansions in atherosclerotic lesions of apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 2000. 20: 1017.
  • 33
    Chan, W. L., Pejnovic, N., Hamilton, H., Liew, T. V., Popadic, D., Poggi, A. and Khan, S. M., Atherosclerotic abdominal aortic aneurysm and the interaction between autologous human plaque-derived vascular smooth muscle cells, type 1 NKT, and helper T cells. Circ. Res. 2005. 96: 675683.
  • 34
    To, K., Agrotis, A., Besra, G., Bobik, A. and Toh, B. H., NKT cell subsets mediate differential proatherogenic effects in ApoE/ mice. Arterioscler. Thromb. Vasc. Biol. 2009. 29: 671677.
  • 35
    Chang, Y. J., Huang, J. R., Tsai, Y. C., Hung, J. T., Wu, D., Fujio, M., Wong, C. H. et al., Potent immune-modulating and anticancer effects of NKT cell stimulatory glycolipids. Proc. Natl. Acad. Sci. USA 2007. 104: 1029910304.
  • 36
    Reape, T. J. and Groot, P. H., Chemokines and atherosclerosis. Atherosclerosis 1999. 147: 213225.
  • 37
    Wang, N., Tabas, I., Winchester, R., Ravalli, S., Rabbani, L. E. and Tall, A., Interleukin 8 is induced by cholesterol loading of macrophages and expressed by macrophage foam cells in human atheroma. J. Biol. Chem. 1996. 271: 88378842.
  • 38
    Apostolopoulos, J., Davenport, P. and Tipping, P. G., Interleukin-8 production by macrophages from atheromatous plaques. Arterioscler. Thromb. Vasc. Biol. 1996. 16: 10071012.
  • 39
    Terkeltaub, R., Banka, C. L., Solan, J., Santoro, D., Brand, K. and Curtiss, L. K., Oxidized LDL induces monocytic cell expression of interleukin-8, a chemokine with T-lymphocyte chemotactic activity. Arterioscler. Thromb. 1994. 14: 4753.
  • 40
    Boisvert, W. A., Santiago, R., Curtiss, L. K. and Terkeltaub, R. A., A leukocyte homologue of the IL-8 receptor CXCR-2 mediates the accumulation of macrophages in atherosclerotic lesions of LDL receptor-deficient mice. J. Clin. Invest. 1998. 101: 353363.
  • 41
    Gerszten, R. E., Garcia-Zepeda, E. A., Lim, Y. C., Yoshida, M., Ding, H. A., Gimbrone Jr M. A., Luster, A. D. et al., MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 1999. 398: 718723.
  • 42
    Yue, T. L., Wang, X., Sung, C. P., Olson, B., McKenna, P. J., Gu, J. L. and Feuerstein, G. Z., Interleukin-8. A mitogen and chemoattractant for vascular smooth muscle cells. Circ. Res. 1994. 75: 17.
  • 43
    Hess, C., Means, T. K., Autissier, P., Woodberry, T., Altfeld, M., Addo, M. M., Frahm, N. et al., IL-8 responsiveness defines a subset of CD8 T cells poised to kill. Blood 2004. 104: 34633471.
  • 44
    Hansson, G. K. and Libby, P., The immune response in atherosclerosis: a double-edged sword. Nat. Rev. Immunol. 2006. 6: 508519.
  • 45
    Mutschelknauss, M., Kummer, M., Muser, J., Feinstein, S. B., Meyer, P. M. and Biedermann, B. C., Individual assessment of arteriosclerosis by empiric clinical profiling. PLoS ONE 2007. 2: e1215.
  • 46
    Biedermann, B. C., Tsakiris, D. A., Gregor, M., Pober, J. S. and Gratwohl, A., Combining altered levels of effector transcripts in circulating T cells with a marker of endothelial injury is specific for active graft-versus-host disease. Bone Marrow Transplant. 2003. 32: 10771084.
  • 47
    De Libero, G., Rocci, M. P., Casorati, G., Giachino, C., Oderda, G., Tavassoli, K. and Migone, N., T cell receptor heterogeneity in gamma delta T cell clones from intestinal biopsies of patients with celiac disease. Eur. J. Immunol. 1993. 23: 499504.
  • 48
    Shamshiev, A., Donda, A., Prigozy, T. I., Mori, L., Chigorno, V., Benedict, C. A., Kappos, L. et al., The alphabeta T cell response to self-glycolipids shows a novel mechanism of CD1b loading and a requirement for complex oligosaccharides. Immunity 2000. 13: 255264.
  • 49
    Brossay, L., Chioda, M., Burdin, N., Koezuka, Y., Casorati, G., Dellabona, P. and Kronenberg, M., CD1d-mediated recognition of an alpha-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J. Exp. Med. 1998. 188: 15211528.