SEARCH

SEARCH BY CITATION

References

  • 1
    Khan, S., van den Broek, M., Schwarz, K., de Giuli, R., Diener, P. A. and Groettrup, M., Immunoproteasomes largely replace constitutive proteasomes during an antiviral and antibacterial immune response in the liver. J. Immunol. 2001. 167: 68596868.
  • 2
    Groettrup, M., Kirk, C. J. and Basler, M., Proteasomes in immune cells: more than peptide producers? Nat. Rev. Immunol. 2010. 10: 7277.
  • 3
    Groettrup, M., Ruppert, T., Kuehn, L., Seeger, M., Standera, S., Koszinowski, U. and Kloetzel, P. M., The interferon-γ-inducible 11S regulator (PA28) and the LMP2/LMP7 subunits govern the peptide production by the 20S proteasome in vitro. J. Biol. Chem. 1995. 270: 2380823815.
  • 4
    Toes, R. E. M., Nussbaum, A. K., Degermann, S., Schirle, M., Emmerich, N. P. N., Kraft, M., Laplace, C. et al., Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. J. Exp. Med. 2001. 194: 112.
  • 5
    Schwarz, K., van den Broek, M., Kostka, S., Kraft, R., Soza, A., Schmidtke, G., Kloetzel, P. M. and Groettrup, M., Overexpression of the proteasome subunits LMP2, LMP7, and MECL-1 but not PA28α/β enhances the presentation of an immunodominant lymphocytic choriomeningitis virus T cell epitope. J. Immunol. 2000. 165: 768778.
  • 6
    Morel, S., Levy, F., BurletSchiltz, O., Brasseur, F., ProbstKepper, M., Peitrequin, A. L., Monsarrat, B. et al., Processing of some antigens by the standard proteasome but not by the immunoproteasome results in poor presentation by dendritic cells. Immunity 2000. 12: 107117.
  • 7
    Chen, W. S., Norbury, C. C., Cho, Y. J., Yewdell, J. W. and Bennink, J. R., Immunoproteasomes shape immunodominance hierarchies of antiviral CD8(+) T cells at the levels of T cell repertoire and presentation of viral antigens. J. Exp. Med. 2001. 193: 13191326.
  • 8
    Sijts, A. J. A. M., Standera, S., Toes, R. E. M., Ruppert, T., Beekman, N. J. C. M., vanVeelen, P. A., Ossendorp, F. A. et al., MHC class I antigen processing of an Adenovirus CTL epitope is linked to the levels of immunoproteasomes in infected cells. J. Immunol. 2000. 164: 45004506.
  • 9
    Basler, M., Moebius, J., Elenich, L., Groettrup, M. and Monaco, J. J., An altered T cell repertoire in MECL-1-deficient mice. J. Immunol. 2006. 176: 66656672.
  • 10
    Pang, K. C., Sanders, M. T., Monaco, J. J., Doherty, P. C., Turner, S. J. and Chen, W. S., Immunoproteasome subunit deficiencies impact differentially on two immunodominant influenza-virus-specific CD8(+) T cell responses. J. Immunol. 2006. 177: 76807688.
  • 11
    Fehling, H. J., Swat, W., Laplace, C., Kuehn, R., Rajewsky, K., Mueller, U. and von Boehmer, H., MHC class I expression in mice lacking proteasome subunit LMP-7. Science 1994. 265: 12341237.
  • 12
    Van Kaer, L., Ashton-Rickardt, P. G., Eichelberger, M., Gaczynska, M., Nagashima, K., Rock, K. L., Goldberg, A. L. et al., Altered peptidase and viral-specific T cell response in LMP 2 mutant mice. Immunity 1994. 1: 533541.
  • 13
    Zaiss, D. M. W., deGraaf, N. and Sijtsi, A. J. A. M., The proteasome immunosubunit multicatalytic endopeptidase complex- like 1 is a T-cell-intrinsic factor influencing homeostatic expansion. Infect. Immun. 2008. 76: 12071213.
  • 14
    Duffy, D., Sparshott, S. M., Yang, C.-p. and Bell, E. B., Transgenic CD4 T cells (DO11.10) are destroyed in MHC-compatible hosts by NK cells and CD8 T cells. J. Immunol. 2008. 180: 747753.
  • 15
    Robertson, N. J., Chai, J. G., Millrain, M, Scott, D., Hashim, F., Manktelow, E, Lemonnier, F. et al., Natural regulation of immunity to minor histocompatibility antigens. J. Immunol. 2007. 178: 35583565.
  • 16
    Caudill, C. M., Jayarapu, K., Elenich, L., Monaco, J. J., Colbert, R. A. and Griffin, T. A., T cells lacking immunoproteasome subunits MECL-1 and LMP7 hyperproliferate in response to polyclonal mitogens. J. Immunol. 2006. 176: 40754082.
  • 17
    Lin, Y., Roberts, T. J., Sriram, V., Cho, S. and Brutkiewicz, R. R., Myeloid marker expression on antiviral CD8+T cells following an acute virus infection. Eur. J. Immunol. 2003. 33: 27362743.
  • 18
    Hensley, S. E., Zanker, D., Dolan, B. P., David, A., Hickman, H. D., Embry, A. C., Skon, C. N. et al., Unexpected role for the immunoproteasome subunit LMP2 in antiviral humoral and innate immune responses. J. Immunol. 2010. 184: 41154122.
  • 19
    Muchamuel, T., Basler, M., Aujay, M. A., Suzuki, E., Kalim, K. W., Lauer, C., Sylvain, C. et al., A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nat. Med. 2009. 15: 781787.
  • 20
    Hayashi, T. and Faustman, D., NOD mice are defective in proteasome production and activation of NF- kappa B. Mol. Cell. Biol. 1999. 19: 86468659.
  • 21
    Kessler, B. M., LennonDumenil, A. M., Shinohara, M. L., Lipes, M. A. and Ploegh, H. L., LMP2 expression and proteasome activity in NOD mice. Nat. Med. 2000. 6: 1064.
  • 22
    Runnels, H. A., Watkins, W. A. and Monaco, J. J., LMP2 expression and proteasome activity in NOD mice. Nat. Med. 2000. 6: 10641065.
  • 23
    Sears, C., Olesen, J., Rubin, D., Finley, D. and Maniatis, T., NF-kappa B p105 processing via the ubiquitin-proteasome pathway. J. Biol. Chem. 1998. 273: 14091419.
  • 24
    Basler, M., Youhnovski, N., van den Broek, M., Przybylski, M. and Groettrup, M., Immunoproteasomes down-regulate presentation of a subdominant T cell epitope from lymphocytic choriomeningitis virus. J. Immunol. 2004. 173: 39253934.
  • 25
    Basler, M., Dajee, M., Moll, C., Groettrup, M. and Kirk, C. J., Prevention of experimental colitis by a selective inhibitor of the immunoproteasome1. J. Immunol. 2010. 185: 634641.
  • 26
    Pircher, H., Burki, K., Lang, R., Hengartner, H. and Zinkernagel, R. M., Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen. Nature 1989. 342: 559561.