SEARCH

SEARCH BY CITATION

References

  • 1
    Harty, J. T. and Badovinac, V. P., Shaping and reshaping CD8+T-cell memory. Nat. Rev. Immunol. 2008. 8: 107119.
  • 2
    Shortman, K. and Liu, Y. J., Mouse and human dendritic cell subtypes. Nat. Rev. Immunol. 2002. 2: 151161.
  • 3
    Birnberg, T., Bar-On, L., Sapoznikov, A., Caton, M. L., Cervantes-Barragan, L., Makia, D., Krauthgamer, R. et al., Lack of conventional dendritic cells is compatible with normal development and T cell homeostasis, but causes myeloid proliferative syndrome. Immunity 2008. 29: 986997.
  • 4
    Jung, S., Unutmaz, D., Wong, P., Sano, G., De los Santos, K., Sparwasser, T., Wu, S. et al., In vivo depletion of CD11c(+) dendritic cells abrogates priming of CD8(+) T cells by exogenous cell-associated antigens. Immunity 2002. 17: 211220.
  • 5
    Reis e Sousa, C., Dendritic cells in a mature age. Nat. Rev. Immunol. 2006. 6: 476483.
  • 6
    Bahjat, K. S., Liu, W., Lemmens, E. E., Schoenberger, S. P., Portnoy, D. A., Dubensky, T. W., Jr. and Brockstedt, D. G., Cytosolic entry controls CD8+-T-cell potency during bacterial infection. Infect. Immun. 2006. 74: 63876397.
  • 7
    Brzoza, K. L., Rockel, A. B. and Hiltbold, E. M., Cytoplasmic entry of Listeria monocytogenes enhances dendritic cell maturation and T cell differentiation and function. J. Immunol. 2004. 173: 26412651.
  • 8
    Muraille, E., Giannino, R., Guirnalda, P., Leiner, I., Jung, S., Pamer, E. G. and Lauvau, G., Distinct in vivo dendritic cell activation by live versus killed Listeria monocytogenes. Eur. J. Immunol. 2005. 35: 14631471.
  • 9
    Dudziak, D., Kamphorst, A. O., Heidkamp, G. F., Buchholz, V. R., Trumpfheller, C., Yamazaki, S., Cheong, C. et al., Differential antigen processing by dendritic cell subsets in vivo. Science 2007. 315: 107111.
  • 10
    Allan, R. S., Smith, C. M., Belz, G. T., van Lint, A. L., Wakim, L. M., Heath, W. R. and Carbone, F. R., Epidermal viral immunity induced by CD8alpha+dendritic cells but not by Langerhans cells. Science 2003. 301: 19251928.
  • 11
    Belz, G. T., Shortman, K., Bevan, M. J. and Heath, W. R., CD8alpha+dendritic cells selectively present MHC class I-restricted noncytolytic viral and intracellular bacterial antigens in vivo. J. Immunol. 2005. 175: 196200.
  • 12
    Hildner, K., Edelson, B. T., Purtha, W. E., Diamond, M., Matsushita, H., Kohyama, M., Calderon, B. et al., Batf3 deficiency reveals a critical role for CD8alpha+dendritic cells in cytotoxic T cell immunity. Science 2008. 322: 10971100.
  • 13
    Sancho, D., Mourao-Sa, D., Joffre, O. P., Schulz, O., Rogers, N. C., Pennington, D. J., Carlyle, J. R. and Reis e Sousa, C., Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. J. Clin. Invest. 2008. 118: 20982110.
  • 14
    Probst, H. C., Tschannen, K., Odermatt, B., Schwendener, R., Zinkernagel, R. M. and Van Den Broek, M., Histological analysis of CD11c-DTR/GFP mice after in vivo depletion of dendritic cells. Clin. Exp. Immunol. 2005. 141: 398404.
  • 15
    Lenz, L. L., Mohammadi, S., Geissler, A. and Portnoy, D. A., SecA2-dependent secretion of autolytic enzymes promotes Listeria monocytogenes pathogenesis. Proc. Natl. Acad. Sci. USA 2003. 100: 1243212437.
  • 16
    Muraille, E., Narni-Mancinelli, E., Gounon, P., Bassand, D., Glaichenhaus, N., Lenz, L. L. and Lauvau, G., Cytosolic expression of SecA2 is a prerequisite for long-term protective immunity. Cell. Microbiol. 2007. 9: 14451454.
  • 17
    Narni-Mancinelli, E., Campisi, L., Bassand, D., Cazareth, J., Gounon, P., Glaichenhaus, N. and Lauvau, G., Memory CD8+T cells mediate antibacterial immunity via CCL3 activation of TNF/ROI+phagocytes. J. Exp. Med. 2007. 204: 20752087.
  • 18
    Lauvau, G., Vijh, S., Kong, P., Horng, T., Kerksiek, K., Serbina, N., Tuma, R. A. and Pamer, E. G., Priming of memory but not effector CD8 T cells by a killed bacterial vaccine. Science 2001. 294: 17351739.
  • 19
    Pamer, E. G., Sijts, A. J., Villanueva, M. S., Busch, D. H. and Vijh, S., MHC class I antigen processing of Listeria monocytogenes proteins: implications for dominant and subdominant CTL responses. Immunol. Rev. 1997. 158: 129136.
  • 20
    Berche, P., Gaillard, J. L. and Sansonetti, P. J., Intracellular growth of Listeria monocytogenes as a prerequisite for in vivo induction of T cell-mediated immunity. J. Immunol. 1987. 138: 22662271.
  • 21
    Neuenhahn, M., Kerksiek, K. M., Nauerth, M., Suhre, M. H., Schiemann, M., Gebhardt, F. E., Stemberger, C. et al., CD8alpha+dendritic cells are required for efficient entry of Listeria monocytogenes into the spleen. Immunity 2006. 25: 619630.
  • 22
    Idoyaga, J., Suda, N., Suda, K., Park, C. G. and Steinman, R. M., Antibody to Langerin/CD207 localizes large numbers of CD8alpha+ dendritic cells to the marginal zone of mouse spleen. Proc. Natl. Acad. Sci. USA 2009. 106: 15241529.
  • 23
    Schaefer, B. C., Schaefer, M. L., Kappler, J. W., Marrack, P. and Kedl, R. M., Observation of antigen-dependent CD8+ T-cell/dendritic cell interactions in vivo. Cell. Immunol. 2001. 214: 110122.
  • 24
    Bajenoff, M., Narni-Mancinelli, E., Brau, F. and Lauvau, G., Visualizing early splenic memory CD8+ T cells reactivation against intracellular bacteria in the mouse. PLoS One 2010. 5: e11524.
  • 25
    Goossens, P. L. and Milon, G., Induction of protective CD8+T lymphocytes by an attenuated Listeria monocytogenes actA mutant. Int. Immunol. 1992. 4: 14131418.
  • 26
    Serbina, N. V., Kuziel, W., Flavell, R., Akira, S., Rollins, B. and Pamer, E. G., Sequential MyD88-independent and -dependent activation of innate immune responses to intracellular bacterial infection. Immunity 2003. 19: 891901.
  • 27
    Geissmann, F., Auffray, C., Palframan, R., Wirrig, C., Ciocca, A., Campisi, L., Narni-Mancinelli, E. and Lauvau, G., Blood monocytes: distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of T-cell responses. Immunol. Cell Biol. 2008. 86: 398408.
  • 28
    Nakano, H., Lin, K. L., Yanagita, M., Charbonneau, C., Cook, D. N., Kakiuchi, T. and Gunn, M. D., Blood-derived inflammatory dendritic cells in lymph nodes stimulate acute T helper type 1 immune responses. Nat. Immunol. 2009. 10: 394402.
  • 29
    den Haan, J. M., Lehar, S. M. and Bevan, M. J., CD8(+) but not CD8(-) dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med. 2000. 192: 16851696.
  • 30
    Pooley, J. L., Heath, W. R. and Shortman, K., Cutting edge: intravenous soluble antigen is presented to CD4 T cells by CD8- dendritic cells, but cross-presented to CD8 T cells by CD8+dendritic cells. J. Immunol. 2001. 166: 53275330.
  • 31
    Aoshi, T., Zinselmeyer, B. H., Konjufca, V., Lynch, J. N., Zhang, X., Koide, Y. and Miller, M. J., Bacterial entry to the splenic white pulp initiates antigen presentation to CD8+ T cells. Immunity 2008. 29: 476486.
  • 32
    Jablonska, J., Dittmar, K. E., Kleinke, T., Buer, J. and Weiss, S., Essential role of CCL2 in clustering of splenic ERTR-9+ macrophages during infection of BALB/c mice by Listeria monocytogenes. Infect. Immun. 2007. 75: 462470.
  • 33
    Aoshi, T., Carrero, J. A., Konjufca, V., Koide, Y., Unanue, E. R. and Miller, M. J., The cellular niche of Listeria monocytogenes infection changes rapidly in the spleen. Eur. J. Immunol. 2009. 39: 417425.
  • 34
    Pham, N. L., Pewe, L. L., Fleenor, C. J., Langlois, R. A., Legge, K. L., Badovinac, V. P. and Harty, J. T., Exploiting cross-priming to generate protective CD8 T-cell immunity rapidly. Proc. Natl. Acad. Sci. USA 2010. 107: 1219812203.
  • 35
    Reinicke, A. T., Omilusik, K. D., Basha, G. and Jefferies, W. A., Dendritic cell cross-priming is essential for immune responses to Listeria monocytogenes. PLoS One 2009. 4: e7210.
  • 36
    Shen, H., Miller, J. F., Fan, X., Kolwyck, D., Ahmed, R. and Harty, J. T., Compartmentalization of bacterial antigens: differential effects on priming of CD8 T cells and protective immunity. Cell 1998. 92: 535545.
  • 37
    Sevilla, N., Kunz, S., Holz, A., Lewicki, H., Homann, D., Yamada, H., Campbell, K. P. et al., Immunosuppression and resultant viral persistence by specific viral targeting of dendritic cells. J. Exp. Med. 2000. 192: 12491260.
  • 38
    Hou, B., Reizis, B. and DeFranco, A. L., Toll-like receptors activate innate and adaptive immunity by using dendritic cell-intrinsic and -extrinsic mechanisms. Immunity 2008. 29: 272282.
  • 39
    Sporri, R. and Reis e Sousa, C., Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+T cell populations lacking helper function. Nat. Immunol. 2005. 6: 163170.
  • 40
    Le Bon, A., Schiavoni, G., D'Agostino, G., Gresser, I., Belardelli, F. and Tough, D. F., Type i interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity 2001. 14: 461470.
  • 41
    Sallusto, F., Cella, M., Danieli, C. and Lanzavecchia, A., Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med. 1995. 182: 389400.
  • 42
    Pasare, C. and Medzhitov, R., Toll-dependent control mechanisms of CD4 T cell activation. Immunity 2004. 21: 733741.
  • 43
    Steinman, R. M., Kaplan, G., Witmer, M. D. and Cohn, Z. A., Identification of a novel cell type in peripheral lymphoid organs of mice. V. Purification of spleen dendritic cells, new surface markers, and maintenance in vitro. J. Exp. Med. 1979. 149: 116.