• 1
    Mantovani, A., Allavena, P., Sica, A. and Balkwill, F., Cancer-related inflammation. Nature 2008. 454: 436444.
  • 2
    Lin, W. W. and Karin, M., A cytokine-mediated link between innate immunity, inflammation, and cancer. J. Clin. Invest. 2007. 117: 11751183.
  • 3
    Apte, R. N. and Voronov, E., Is interleukin-1 a good or bad ‘guy’ in tumor immunobiology and immunotherapy? Imunol. Rev. 2008. 222: 222241.
  • 4
    Dinarello, C. A., Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 2009. 27: 519550.
  • 5
    Voronov, E., Shouval, D. S., Krelin, Y., Cagnano, E., Benharroch, D., Iwakura, Y., Dinarello, C. A. and Apte, R. N., IL-1 is required for tumor invasiveness and angiogenesis. Proc. Natl. Acad. Sci. USA 2003. 100: 26452650.
  • 6
    Shchors, K., Shchors, E., Rostker, F., Lawlor, E. R., Brown-Swigart, L. and Evan, G. I., The Myc-dependent angiogenic switch in tumors is mediated by interleukin 1beta. Genes Dev. 2006. 20: 25272538.
  • 7
    Apte, R. N., Dotan, S., Elkabets, M., White, M. R., Reich, E., Carmi, Y., Song, X. et al., The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer Metastasis Rev. 2006. 25: 387408.
  • 8
    Krelin, Y., Voronov, E., Dotan, S., Elkabets, M., Reich, E., Fogel, M., Huszar, M. et al., Interleukin-1beta-driven inflammation promotes the development and invasiveness of chemical carcinogen-induced tumors. Cancer Res. 2007. 67: 10621071.
  • 9
    Tu, S., Bhagat, G., Cui, G., Takaishi, S., Kurt-Jones, E. A., Rickman, B., Betz, K. S. et al., Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 2008. 14: 408419.
  • 10
    Song, X., Krelin, Y., Dvorkin, T., Bjorkdahl, O., Segal, S., Dinarello, C. A., Voronov, E. and Apte, R. N., CD11b+/Gr-1+immature myeloid cells mediate suppression of T cells in mice bearing tumors of IL-1beta-secreting cells. J. Immunol. 2005. 175: 82008208.
  • 11
    Bunt, S. K., Sinha, P., Clements, V. K., Leips, J. and Ostrand-Rosenberg, S., Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J. Immunol. 2006. 176: 284290.
  • 12
    Bunt, S. K., Sinha, P., Clements, V. K., Leips, J. and Ostrand-Rosenberg, S., Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res. 2007. 67: 1001910026.
  • 13
    Ostrand-Rosenberg, S. and Sinha, P., Myeloid-derived suppressor cells: linking inflammation and cancer. J. Immunol. 2009. 182: 44994506.
  • 14
    Gabrilovich, D. I. and Nagaraj, S., Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 2009. 9: 162174.
  • 15
    Youn, J. I., Nagaraj, S., Collazo, M., and Gabrilovich, D. I., Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J. Immunol. 2008. 181: 57915802.
  • 16
    Bunt, S. K., Clements, V. K., Hanson, E. M., Sinha, P. and Ostrand-Rosenberg, S., Inflammation enhances myeloid-derived suppressor cell cross-talk by signaling through Toll-like receptor 4. J. Leukoc. Biol. 2009. 85: 9961004.
  • 17
    Srivastava, M. K., Sinha, P., Clements, V. K., Rodriguez, P. and Ostrand-Rosenberg, S., Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res. 2010. 70: 6877.
  • 18
    Li, H., Han, Y., Guo, Q., Zhang, M. and Cao, X., Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta1. J. Immunol. 2009. 182: 240249.
  • 19
    Movahedi, K., Guilliams, M., Van den Bossche, J., Van den Bergh, R., Gysemans, C., Beschin, A., De Baetselier, P. and Van Ginderachter, J. A., Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 2008. 111: 42334244.
  • 20
    Sawanobori, Y., Ueha, S., Kurachi, M., Shimaoka, T., Talmadge, J. E., Abe, J., Shono, Y. et al., Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood 2008. 111: 54575466.
  • 21
    Dolcetti, L., Peranzoni, E., Ugel, S., Marigo, I., Fernandez Gomez, A., Mesa, C., Geilich, M. et al., Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur. J. Immunol. 2010. 40: 2035.
  • 22
    Cerwenka, A. and Lanier, L. L., Natural killer cells, viruses and cancer. Nat. Rev. Immunol. 2001. 1: 4149.
  • 23
    Swann, J. B. and Smyth, M. J., Immune surveillance of tumors. J. Clin. Invest. 2007. 117: 11371146.
  • 24
    Di Santo, J. P., Functionally distinct NK-cell subsets: developmental origins and biological implications. Eur. J. Immunol. 2008. 38: 29482951.
  • 25
    Huntington, N. D., Vosshenrich, C. A. J., and Di Santo, J. P., Developmental pathways that generate natural-killer-cell diversity in mice and humans. Nat. Rev. Immunol. 2007. 7: 703714.
  • 26
    Pierson, B. A. and Miller, J. S., CD56+bright and CD56+dim natural killer cells in patients with chronic myelogenous leukemia progressively decrease in number, respond less to stimuli that recruit clonogenic natural killer cells, and exhibit decreased proliferation on a per cell basis. Blood 1996. 88: 22792287.
  • 27
    Sibbitt, W. L., Jr., Bankhurst, A. D., Jumonville, A. J., Saiki, J. H., Saiers, J. H. and Doberneck, R. C., Defects in natural killer cell activity and interferon response in human lung carcinoma and malignant melanoma. Cancer Res. 1984. 44: 852856.
  • 28
    Liu, C., Yu, S., Kappes, J., Wang, J., Grizzle, W. E., Zinn, K. R. and Zhang, H. G., Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host. Blood 2007. 109: 43364342.
  • 29
    Dasgupta, S., Bhattacharya-Chatterjee, M., O'Malley, B. W., Jr., and Chatterjee, S. K., Inhibition of NK cell activity through TGF-beta 1 by down-regulation of NKG2D in a murine model of head and neck cancer. J. Immunol. 2005. 175: 55415550.
  • 30
    Suzuki, E., Kapoor, V., Jassar, A. S., Kaiser, L. R. and Albelda, S. M., Gemcitabine selectively eliminates splenic Gr-1+/CD11b+myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin. Cancer Res. 2005. 11: 67136721.
  • 31
    Youn, J., and Gabrilovich, D. I., The biology of myeloid-derived suppressor cells: The blessing and the curse of morphological and functional heterogeneity. Eur. J. Immunol. 2010. 40: DOI: 10.1002/eji.201040895.
  • 32
    Colotta, F., Re, F., Polentarutti, N., Sozzani, S. and Mantovani, A., Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood 1992. 80: 20122020.
  • 33
    Zhang, X., Majlessi, L., Deriaud, E., Leclerc, C. and Lo-Man, R., Coactivation of Syk kinase and MyD88 adaptor protein pathways by bacteria promotes regulatory properties of neutrophils. Immunity 2009. 31: 761771.
  • 34
    Cassatella, M. A., Locati, M. and Mantovani, A., Never underestimate the power of a neutrophil. Immunity 2009. 31: 698700.
  • 35
    Lechner, M. G., Liebertz, D. J. and Epstein, A. L., Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J. Immunol. 2010. 185: 22732284.
  • 36
    Movahedi, K., Laoui, D., Gysemans, C., Baeten, M., Stangé, G., Van den Bossche, J., Mack, M. et al., Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res. 2010. 70: 57285739.
  • 37
    Fridlender, Z. G., Sun, J., Kim, S., Kapoor, V., Cheng, G., Ling, L., Worthen, G. S. and Albelda, S. M., Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell 2009. 16: 183194.
  • 38
    Mantovani, A., The Yin-Yang of tumor-associated neutrophils. Cancer Cell 2009. 16: 173174.
  • 39
    Dunn, G. P., Old, L. J. and Schreiber, R. D., The three Es of cancer immunoediting. Annu. Rev. Immunol. 2004. 22: 329360.
  • 40
    Guerra, N., Tan, Y. X., Joncker, N. T., Choy, A., Gallardo, F., Xiong, N., Knoblaugh, S. et al., NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 2008. 28: 571580.
  • 41
    Hayakawa, Y. and Smyth, M. J., NKG2D and cytotoxic effector function in tumor immune surveillance. Semin. Immunol. 2006. 18: 176185.
  • 42
    Epling-Burnette, P. K., Bai, F., Painter, J. S., Rollison, D. E., Salih, H. R., Krusch, M., Zou, J. et al., Reduced natural killer (NK) function associated with high-risk myelodysplastic syndrome (MDS) and reduced expression of activating NK receptors. Blood 2007. 109: 48164824.
  • 43
    Konjevic, G., Mirjacic Martinovic, K., Vuletic, A., Jovic, V., Jurisic, V., Babovic, N. and Spuzic, I., Low expression of CD161 and NKG2D activating NK receptor is associated with impaired NK cell cytotoxicity in metastatic melanoma patients. Clin. Exp. Metastasis 2007. 24: 111.
  • 44
    Richards, J. O., Chang, X., Blaser, B. W., Caligiuri, M. A., Zheng, P., Liu, Y., Tumor growth impedes natural-killer-cell maturation in the bone marrow. Blood 2006. 108: 246252.
  • 45
    De Colvenaer, V., Taveirne, S., Hamann, J., de Bruin, A. M., De Smedt, M., Taghon, T., Vandekerckhove, B. et al., Continuous CD27 triggering in vivo strongly reduces NK cell numbers. Eur. J. Immunol. 2010. 40: 11071117.
  • 46
    Oppenheim, D. E., Roberts, S. J., Clarke, S. L., Filler, R., Lewis, J. M., Tigelaar, R. E., Girardi, M. and Hayday, A. C., Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nat. Immunol. 2005. 6: 928937.
  • 47
    Nausch, N., Galani, I. E., Schlecker, E. and Cerwenka, A., Mononuclear Myeloid-Derived “Suppressor” Cells express RAE-1 and activate NK cells. Blood 2008. 112: 40804089.
  • 48
    Vosshenrich, C. A. J., Ranson, T., Samson, S. I., Rosmaraki, E. E., Colucci, F. and Di Santo, J. P., Defining the role of γc-dependent cytokines in the development and differentiation of NK cells. J. Immunol. 2005. 174: 12131221.
  • 49
    Vosshenrich, C. A. J., Lesjean-Pottier, S., Hasan, M., Richard-Le Goff, O., Corcuff, E., Mandelboim, O. and Di Santo, J. P., CD11cloB220+Interferon-producing Killer Dendritic Cells are activated NK cells. J. Exp. Med. 2007. 204: 25692578.
  • 50
    Horai, R., Asano, M., Sudo, K., Kanuka, H., Suzuki, M., Nishihara, M., Takahashi, M. and Iwakura, Y., Production of mice deficient in genes for interleukin (IL)-1alpha, IL-1beta, IL-1alpha/beta, and IL-1 receptor antagonist shows that IL-1beta is crucial in turpentine-induced fever development and glucocorticoid secretion. J. Exp. Med. 1998. 187: 14631475.
  • 51
    Zennou, V., Serguera, C., Sarkis, C., Colin, P., Perret, E., Mallet, J. and Charneau, P., The HIV-1 DNA flap stimulates HIV vector-mediated cell transduction in the brain. Nat. Biotechnol. 2001. 19: 446450.