SEARCH

SEARCH BY CITATION

References

  • 1
    Ding, L. A., Li, J. S., Li, Y. S., Zhu, N. T., Liu, F. N. and Tan, L., Intestinal barrier damage caused by trauma and lipopolysaccharide. World J. Gastroenterol. 2004. 10: 23732378.
  • 2
    Xavier, R. J. and Podolsky, D. K., Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007. 448: 427434.
  • 3
    Wirtz, S., Neufert, C., Weigmann, B. and Neurath, M. F., Chemically induced mouse models of intestinal inflammation. Nat. Protoc. 2007. 2: 541546.
  • 4
    Monteleone, G., Caruso, R., Fina, D., Peluso, I., Gioia, V., Stolfi, C., Fantini, M. C. et al., Control of matrix metalloproteinase production in human intestinal fibroblasts by interleukin 21. Gut 2006. 55: 17741780.
  • 5
    Gordon, J. N., Pickard, K. M., Di Sabatino, A., Prothero, J. D., Pender, S. L., Goggin, P. M. and MacDonald, T. T., Matrix metalloproteinase-3 production by gut IgG plasma cells in chronic inflammatory bowel disease. Inflamm. Bowel Dis. 2008. 14: 195203.
  • 6
    Brown, S. J. and Mayer, L., The immune response in inflammatory bowel disease. Am. J. Gastroenterol. 2007. 102: 20582069.
    Direct Link:
  • 7
    Dieleman, L. A., Ridwan, B. U., Tennyson, G. S., Beagley, K. W., Bucy, R. P. and Elson, C. O., Dextran sulfate sodium-induced colitis occurs in severe combined immunodeficient mice. Gastroenterology 1994. 107: 16431652.
  • 8
    Huber, S., Schramm, C., Lehr, H. A., Mann, A., Schmitt, S., Becker, C., Protschka, M. et al., Cutting edge: TGF-beta signaling is required for the in vivo expansion and immunosuppressive capacity of regulatory CD4+CD25+ T cells. J. Immunol. 2004. 173: 65266531.
  • 9
    Hausmann, M., Obermeier, F., Schreiter, K., Spottl, T., Falk, W., Scholmerich, J., Herfarth, H. et al., Cathepsin D is up-regulated in inflammatory bowel disease macrophages. Clin. Exp. Immunol. 2004. 136: 157167.
  • 10
    Ghia, J. E., Galeazzi, F., Ford, D. C., Hogaboam, C. M., Vallance, B. A. and Collins, S., Role of M-CSF-dependent macrophages in colitis is driven by the nature of the inflammatory stimulus. Am. J. Physiol. Gastrointest. Liver Physiol. 2008. 294: G770G777.
  • 11
    Kamada, N., Hisamatsu, T., Okamoto, S., Chinen, H., Kobayashi, T., Sato, T., Sakuraba, A. et al., Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-γ axis. J. Clin. Invest. 2008. 118: 22692280.
  • 12
    Platt, A. M., Bain, C. C., Bordon, Y., Sester, D. P. and Mowat, A. M., An independent subset of TLR expressing CCR2-dependent macrophages promotes colonic inflammation. J. Immunol. 2010. 184: 68436854.
  • 13
    Pull, S. L., Doherty, J. M., Mills, J. C., Gordon, J. I. and Stappenbeck, T. S., Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc. Natl. Acad. Sci. USA 2005. 102: 99104.
  • 14
    Qualls, J. E., Kaplan, A. M., van Rooijen, N. and Cohen, D. A., Suppression of experimental colitis by intestinal mononuclear phagocytes. J. Leukoc. Biol. 2006. 80: 802815.
  • 15
    Okamoto, R. and Watanabe, M., Cellular and molecular mechanisms of the epithelial repair in IBD. Dig. Dis. Sci. 2005. 50: S34S38.
  • 16
    Smith, P. D., Ochsenbauer-Jambor, C. and Smythies, L. E., Intestinal macrophages: unique effector cells of the innate immune system. Immunol. Rev. 2005. 206: 149159.
  • 17
    Li, M. O., Wan, Y. Y., Sanjabi, S., Robertson, A. K. and Flavell, R. A., Transforming growth factor-beta regulation of immune responses. Annu. Rev. Immunol. 2006. 24: 99146.
  • 18
    Becker, C., Fantini, M. C., Schramm, C., Lehr, H. A., Wirtz, S., Nikolaev, A., Burg, J. et al., TGF-β suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity 2004. 21: 491501.
  • 19
    Souza, R. F., Garrigue-Antar, L., Lei, J., Yin, J., Appel, R., Vellucci, V. F., Zou, T. T. et al., Alterations of transforming growth factor-beta 1 receptor type II occur in ulcerative colitis-associated carcinomas, sporadic colorectal neoplasms, and esophageal carcinomas, but not in gastric neoplasms. Hum. Cell 1996. 9: 229236.
  • 20
    Souza, R. F., Lei, J., Yin, J., Appel, R., Zou, T. T., Zhou, X., Wang, S. et al., A transforming growth factor beta 1 receptor type II mutation in ulcerative colitis-associated neoplasms. Gastroenterology 1997. 112: 4045.
  • 21
    Beck, P. L., Rosenberg, I. M., Xavier, R. J., Koh, T., Wong, J. F. and Podolsky, D. K., Transforming growth factor-beta mediates intestinal healing and susceptibility to injury in vitro and in vivo through epithelial cells. Am. J. Pathol. 2003. 162: 597608.
  • 22
    Fahlen, L., Read, S., Gorelik, L., Hurst, S. D., Coffman, R. L., Flavell, R. A. and Powrie, F., T cells that cannot respond to TGF-β escape control by CD4+CD25+ regulatory T cells. J. Exp. Med. 2005. 201: 737746.
  • 23
    Kobori, A., Yagi, Y., Imaeda, H., Ban, H., Bamba, S., Tsujikawa, T., Saito, Y. et al., Interleukin-33 expression is specifically enhanced in inflamed mucosa of ulcerative colitis. J. Gastroenterol. 2010. 45: 9991000.
  • 24
    Seidelin, J. B., Bjerrum, J. T., Coskun, M., Widjaya, B., Vainer, B. and Nielsen, O. H., IL-33 is upregulated in colonocytes of ulcerative colitis. Immunol. Lett. 2010. 128: 8085.
  • 25
    Schmitz, J., Owyang, A., Oldham, E., Song, Y., Murphy, E., McClanahan, T. K., Zurawski, G. et al., IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 2005. 23: 479490.
  • 26
    Lang, R., Rutschman, R. L., Greaves, D. R. and Murray, P. J., Autocrine deactivation of macrophages in transgenic mice constitutively overexpressing IL-10 under control of the human CD68 promoter. J. Immunol. 2002. 168: 34023411.
  • 27
    Gough, P. J., Gordon, S. and Greaves, D. R., The use of human CD68 transcriptional regulatory sequences to direct high-level expression of class A scavenger receptor in macrophages in vitro and in vivo. Immunology 2001. 103: 351361.
  • 28
    Lee, G. T., Hong, J. H., Kwak, C., Woo, J., Liu, V., Lee, C. and Kim, I. Y., Effect of dominant negative transforming growth factor-beta receptor type II on cytotoxic activity of RAW 264.7, a murine macrophage cell line. Cancer Res. 2007. 67: 67176724.
  • 29
    Hahm, K. B., Im, Y. H., Parks, T. W., Park, S. H., Markowitz, S., Jung, H. Y., Green, J. and Kim, S. J., Loss of transforming growth factor beta signalling in the intestine contributes to tissue injury in inflammatory bowel disease. Gut 2001. 49: 190198.
  • 30
    Ince, M. N., Elliott, D. E., Setiawan, T., Metwali, A., Blum, A., Chen, H. L., Urban, J. F. et al., Role of T cell TGF-β signaling in intestinal cytokine responses and helminthic immune modulation. Eur. J. Immunol. 2009. 39: 18701878.
  • 31
    Frugier, T., Koishi, K., Matthaei, K. I. and McLennan, I. S., Transgenic mice carrying a tetracycline-inducible, truncated transforming growth factor beta receptor (TGF-βRII). Genesis 2005. 42: 15.
  • 32
    Kang, S. S., Bloom, S. M., Norian, L. A., Geske, M. J., Flavell, R. A., Stappenbeck, T. S. and Allen, P. M., An antibiotic-responsive mouse model of fulminant ulcerative colitis. PLoS Med. 2008. 5: e41.
  • 33
    Chanteux, H., Guisset, A. C., Pilette, C. and Sibille, Y., LPS induces IL-10 production by human alveolar macrophages via MAPKinases- and Sp1-dependent mechanisms. Respir. Res. 2007. 8: 71.
  • 34
    Maeda, H., Kuwahara, H., Ichimura, Y., Ohtsuki, M., Kurakata, S. and Shiraishi, A., TGF-β enhances macrophage ability to produce IL-10 in normal and tumor-bearing mice. J. Immunol. 1995. 155: 49264932.
  • 35
    Zhou, L., Lopes, J. E., Chong, M. M., Ivanov, II., Min, R., Victora, G. D., Shen, Y. et al., TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature 2008. 453: 236240.
  • 36
    Kriegel, M. A., Li, M. O., Sanjabi, S., Wan, Y. Y. and Flavell, R. A., Transforming growth factor-beta: recent advances on its role in immune tolerance. Curr. Rheumatol. Rep. 2006. 8: 138144.
  • 37
    Lang, R., Patel, D., Morris, J. J., Rutschman, R. L. and Murray, P. J., Shaping gene expression in activated and resting primary macrophages by IL-10. J. Immunol. 2002. 169: 22532263.
  • 38
    Greaves, D. R. and Gordon, S., Macrophage-specific gene expression: current paradigms and future challenges. Int. J. Hematol. 2002. 76: 615.
  • 39
    Herbert, D. R., Holscher, C., Mohrs, M., Arendse, B., Schwegmann, A., Radwanska, M., Leeto, M. et al., Alternative macrophage activation is essential for survival during schistosomiasis and downmodulates T helper 1 responses and immunopathology. Immunity 2004. 20: 623635.
  • 40
    Sasmono, R. T., Oceandy, D., Pollard, J. W., Tong, W., Pavli, P., Wainwright, B. J., Ostrowski, M. C. et al., A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 2003. 101: 11551163.
  • 41
    Buanne, P., Di Carlo, E., Caputi, L., Brandolini, L., Mosca, M., Cattani, F., Pellegrini, L. et al., Crucial pathophysiological role of CXCR2 in experimental ulcerative colitis in mice. J. Leukoc. Biol. 2007. 82: 12391246.
  • 42
    Fridlender, Z. G., Sun, J., Kim, S., Kapoor, V., Cheng, G., Ling, L., Worthen, G. S. and Albelda, S. M., Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 2009. 16: 183194.
  • 43
    Lin, A. A., Tripathi, P. K., Sholl, A., Jordan, M. B. and Hildeman, D. A., Gamma interferon signaling in macrophage lineage cells regulates central nervous system inflammation and chemokine production. J. Virol. 2009. 83: 86048615.
  • 44
    Lykens, J. E., Terrell, C. E., Zoller, E. E., Divanovic, S., Trompette, A., Karp, C. L., Aliberti, J. et al., Mice with a selective impairment of IFN-γ signaling in macrophage lineage cells demonstrate the critical role of IFN-γ-activated macrophages for the control of protozoan parasitic infections in vivo. J. Immunol. 2010, 184: 877885.
  • 45
    Takeda, K., Clausen, B. E., Kaisho, T., Tsujimura, T., Terada, N., Forster, I. and Akira, S., Enhanced TH1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 1999. 10: 3949.
  • 46
    Murray, P. J., The primary mechanism of the IL-10-regulated antiinflammatory response is to selectively inhibit transcription. Proc. Natl. Acad. Sci. USA 2005. 102: 86868691.
  • 47
    Ahrens, R., Waddell, A., Seidu, L., Blanchard, C., Carey, R., Forbes, E., Lampinen, M. et al., Intestinal macrophage/epithelial cell-derived CCL11/eotaxin-1 mediates eosinophil recruitment and function in pediatric ulcerative colitis. J. Immunol. 2008. 181: 73907399.
  • 48
    Munitz, A., Waddell, A., Seidu, L., Cole, E. T., Ahrens, R., Hogan, S. P. and Rothenberg, M. E., Resistin-like molecule alpha enhances myeloid cell activation and promotes colitis. J. Allergy Clin. Immunol. 2008. 122: 12001207 e1201.
  • 49
    Fuss, I. J., Boirivant, M., Lacy, B. and Strober, W., The interrelated roles of TGF-β and IL-10 in the regulation of experimental colitis. J. Immunol. 2002. 168: 900908.
  • 50
    Denning, T. L., Wang, Y. C., Patel, S. R., Williams, I. R. and Pulendran, B., Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat. Immunol. 2007. 8: 10861094.
  • 51
    Pastorelli, L., Garg, R. R., Hoang, S. B., Spina, L., Mattioli, B., Scarpa, M., Fiocchi, C. et al., Epithelial-derived IL-33 and its receptor ST2 are dysregulated in ulcerative colitis and in experimental Th1/Th2 driven enteritis. Proc. Natl. Acad. Sci. USA 2010. 107: 80178022.
  • 52
    Beltran, C. J., Nunez, L. E., Diaz-Jimenez, D., Farfan, N., Candia, E., Heine, C., Lopez, F. et al., Characterization of the novel ST2/IL-33 system in patients with inflammatory bowel disease. Inflamm. Bowel Dis. 2010. 16: 10971107.
  • 53
    Fuss, I. J., Heller, F., Boirivant, M., Leon, F., Yoshida, M., Fichtner-Feigl, S., Yang, Z. et al., Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J. Clin. Invest. 2004. 113: 14901497.
  • 54
    Leppkes, M., Becker, C., Ivanov, II., Hirth, S., Wirtz, S., Neufert, C., Pouly, S. et al., RORγ-expressing Th17 cells induce murine chronic intestinal inflammation via redundant effects of IL-17A and IL-17F. Gastroenterology 2009. 136: 257267.
  • 55
    Oboki, K., Ohno, T., Kajiwara, N., Arae, K., Morita, H., Ishii, A., Nambu, A. et al., IL-33 is a crucial amplifier of innate rather than acquired immunity. Proc. Natl. Acad. Sci. USA 2010. 107: 1858118586.
  • 56
    Shah, A. H., Tabayoyong, W. B., Kimm, S. Y., Kim, S. J., Van Parijs, L. and Lee, C., Reconstitution of lethally irradiated adult mice with dominant negative TGF-β type II receptor-transduced bone marrow leads to myeloid expansion and inflammatory disease. J. Immunol. 2002. 169: 34853491.