• 1
    Lusis, A. J., Atherosclerosis. Nature 2000. 407: 233241.
  • 2
    Ross, R., Atherosclerosis – an inflammatory disease. N. Engl. J. Med. 1999. 340: 115126.
  • 3
    Libby, P., Inflammation in atherosclerosis. Nature 2002. 420: 868874.
  • 4
    Rader, D. J. and Daugherty, A., Translating molecular discoveries into new therapies for atherosclerosis. Nature 2008. 451: 904913.
  • 5
    Dinarello, C. A., Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 2009. 27: 519550.
  • 6
    Elhage, R., Maret, A., Pieraggi, M. T., Thiers, J. C., Arnal, J. F. and Bayard, F., Differential effects of interleukin-1 receptor antagonist and tumor necrosis factor binding protein on fatty-streak formation in apolipoprotein E-deficient mice. Circulation 1998. 97: 242244.
  • 7
    Isoda, K., Shiigai, M., Ishigami, N., Matsuki, T., Horai, R., Nishikawa, K., Kusuhara, M. et al., Deficiency of interleukin-1 receptor antagonist promotes neointimal formation after injury. Circulation 2003. 108: 516518.
  • 8
    Kamari, Y., Werman-Venkert, R., Shaish, A., Werman, A., Harari, A., Gonen, A., Voronov, E. et al., Differential role and tissue specificity of interleukin-1alpha gene expression in atherogenesis and lipid metabolism. Atherosclerosis 2007. 195: 3138.
  • 9
    Kirii, H., Niwa, T., Yamada, Y., Wada, H., Saito, K., Iwakura, Y., Asano, M. et al., Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler. Thromb. Vasc. Biol. 2003. 23: 656660.
  • 10
    Merhi-Soussi, F., Kwak, B. R., Magne, D., Chadjichristos, C., Berti, M., Pelli, G., James, R. W. et al., Interleukin-1 plays a major role in vascular inflammation and atherosclerosis in male apolipoprotein E-knockout mice. Cardiovasc. Res. 2005. 66: 583593.
  • 11
    Berliner, J. A. and Watson, A. D., A role for oxidized phospholipids in atherosclerosis. N. Engl. J. Med. 2005. 353: 911.
  • 12
    Bochkov, V. N., Oskolkova, O. V., Birukov, K. G., Levonen, A. L., Binder, C. J. and Stockl, J., Generation and biological activities of oxidized phospholipids. Antioxid. Redox Signal. 2010. 12: 10091059.
  • 13
    Anwar, A. A., Li, F. Y., Leake, D. S., Ishii, T., Mann, G. E. and Siow, R. C., Induction of heme oxygenase 1 by moderately oxidized low-density lipoproteins in human vascular smooth muscle cells: role of mitogen-activated protein kinases and Nrf2. Free Radic. Biol. Med. 2005. 39: 227236.
  • 14
    Ishii, T., Itoh, K., Ruiz, E., Leake, D. S., Unoki, H., Yamamoto, M. and Mann, G. E., Role of Nrf2 in the regulation of CD36 and stress protein expression in murine macrophages: activation by oxidatively modified LDL and 4-hydroxynonenal. Circ. Res. 2004. 94: 609616.
  • 15
    Jyrkkanen, H. K., Kansanen, E., Inkala, M., Kivela, A. M., Hurttila, H., Heinonen, S. E., Goldsteins, G. et al., Nrf2 regulates antioxidant gene expression evoked by oxidized phospholipids in endothelial cells and murine arteries in vivo. Circ. Res. 2008. 103: e1e9.
  • 16
    Hosoya, T., Maruyama, A., Kang, M. I., Kawatani, Y., Shibata, T., Uchida, K., Warabi, E. et al., Differential responses of the Nrf2-Keap1 system to laminar and oscillatory shear stresses in endothelial cells. J. Biol. Chem. 2005. 280: 2724427250.
  • 17
    Chen, X. L., Dodd, G., Thomas, S., Zhang, X., Wasserman, M. A., Rovin, B. H. and Kunsch, C., Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression. Am. J. Physiol. Heart Circ. Physiol. 2006. 290: H1862H1870.
  • 18
    Levonen, A. L., Inkala, M., Heikura, T., Jauhiainen, S., Jyrkkanen, H. K., Kansanen, E., Maatta, K. et al., Nrf2 gene transfer induces antioxidant enzymes and suppresses smooth muscle cell growth in vitro and reduces oxidative stress in rabbit aorta in vivo. Arterioscler. Thromb. Vasc. Biol. 2007. 27: 741747.
  • 19
    Zakkar, M., Van der Heiden, K., Luong le, A., Chaudhury, H., Cuhlmann, S., Hamdulay, S. S., Krams, R. et al., Activation of Nrf2 in endothelial cells protects arteries from exhibiting a proinflammatory state. Arterioscler. Thromb. Vasc. Biol. 2009. 29: 18511857.
  • 20
    Idriss, N. K., Blann, A. D. and Lip, G. Y., Hemoxygenase-1 in cardiovascular disease. J. Am. Coll. Cardiol. 2008. 52: 971978.
  • 21
    Nakamura, S., Sugiyama, S., Fujioka, D., Kawabata, K., Ogawa, H. and Kugiyama, K., Polymorphism in glutamate-cysteine ligase modifier subunit gene is associated with impairment of nitric oxide-mediated coronary vasomotor function. Circulation 2003. 108: 14251427.
  • 22
    Ishikawa, K., Sugawara, D., Wang, X., Suzuki, K., Itabe, H., Maruyama, Y. and Lusis, A. J., Heme oxygenase-1 inhibits atherosclerotic lesion formation in ldl-receptor knockout mice. Circ. Res. 2001. 88: 506512.
  • 23
    Juan, S. H., Lee, T. S., Tseng, K. W., Liou, J. Y., Shyue, S. K., Wu, K. K. and Chau, L. Y., Adenovirus-mediated heme oxygenase-1 gene transfer inhibits the development of atherosclerosis in apolipoprotein E-deficient mice. Circulation 2001. 104: 15191525.
  • 24
    Kisucka, J., Chauhan, A. K., Patten, I. S., Yesilaltay, A., Neumann, C., Van Etten, R. A., Krieger, M. and Wagner, D. D., Peroxiredoxin1 prevents excessive endothelial activation and early atherosclerosis. Circ. Res. 2008. 103: 598605.
  • 25
    Sussan, T. E., Jun, J., Thimmulappa, R., Bedja, D., Antero, M., Gabrielson, K. L., Polotsky, V. Y. and Biswal, S., Disruption of Nrf2, a key inducer of antioxidant defenses, attenuates ApoE-mediated atherosclerosis in mice. PLoS One 2008. 3: e3791.
  • 26
    Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T. et al., An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 1997. 236: 313322.
  • 27
    Fine, M. J., Kapoor, W. and Falanga, V., Cholesterol crystal embolization: a review of 221 cases in the English literature. Angiology 1987. 38: 769784.
  • 28
    Scolari, F. and Ravani, P., Atheroembolic renal disease. Lancet 2010. 375: 16501660.
  • 29
    Terao, T., Onoue, H., Hashimoto, T., Ishibashi, T., Kogure, T. and Abe, T., Cholesterol granuloma in the petrous apex: case report and review. Acta Neurochir. (Wien) 2001. 143: 947952.
  • 30
    Van Offel, J. F., De Clerck, L. S. and Kersschot, I. E., Cholesterol crystals and IgE-containing immune complexes in rheumatoid pericarditis. Clin. Rheumatol. 1991. 10: 7880.
  • 31
    Chen, C. J., Shi, Y., Hearn, A., Fitzgerald, K., Golenbock, D., Reed, G., Akira, S. and Rock, K. L., MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J. Clin. Invest. 2006. 116: 22622271.
  • 32
    Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. and Tschopp, J., Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006. 440: 237241.
  • 33
    Klinkner, A. M., Waites, C. R., Kerns, W. D. and Bugelski, P. J., Evidence of foam cell and cholesterol crystal formation in macrophages incubated with oxidized LDL by fluorescence and electron microscopy. J. Histochem. Cytochem. 1995. 43: 10711078.
  • 34
    Tangirala, R. K., Jerome, W. G., Jones, N. L., Small, D. M., Johnson, W. J., Glick, J. M., Mahlberg, F. H. and Rothblat, G. H., Formation of cholesterol monohydrate crystals in macrophage-derived foam cells. J. Lipid Res. 1994. 35: 93104.
  • 35
    Abela, G. S. and Aziz, K., Cholesterol crystals rupture biological membranes and human plaques during acute cardiovascular events – a novel insight into plaque rupture by scanning electron microscopy. Scanning 2006. 28: 110.
  • 36
    Matsuki, T., Isoda, K., Horai, R., Nakajima, A., Aizawa, Y., Suzuki, K., Ohsuzu, F. and Iwakura, Y., Involvement of tumor necrosis factor-alpha in the development of T cell-dependent aortitis in interleukin-1 receptor antagonist-deficient mice. Circulation 2005. 112: 13231331.
  • 37
    Franchi, L., Eigenbrod, T., Munoz-Planillo, R. and Nunez, G., The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat. Immunol. 2009. 10: 241247.
  • 38
    Martinon, F., Mayor, A. and Tschopp, J., The inflammasomes: guardians of the body. Annu. Rev. Immunol. 2009. 27: 229265.
  • 39
    Spohn, G., Keller, I., Beck, M., Grest, P., Jennings, G. T. and Bachmann, M. F., Active immunization with IL-1 displayed on virus-like particles protects from autoimmune arthritis. Eur. J. Immunol. 2008. 38: 877887.
  • 40
    Yajima, N., Takahashi, M., Morimoto, H., Shiba, Y., Takahashi, Y., Masumoto, J., Ise, H. et al., Critical role of bone marrow apoptosis-associated speck-like protein, an inflammasome adaptor molecule, in neointimal formation after vascular injury in mice. Circulation 2008. 117: 30793087.
  • 41
    Duewell, P., Kono, H., Rayner, K. J., Sirois, C. M., Vladimer, G., Bauernfeind, F. G., Abela, G. S. et al., NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010. 464: 13571361.
  • 42
    Rajamaki, K., Lappalainen, J., Oorni, K., Valimaki, E., Matikainen, S., Kovanen, P. T. and Eklund, K. K., Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS One 2010. 5: e11765.
  • 43
    Krishnan, E., Inflammation, oxidative stress and lipids: the risk triad for atherosclerosis in gout. Rheumatology (Oxford) 2010: doi:10.1093/rheumatology/keq1037.
  • 44
    Libby, P., Role of inflammation in atherosclerosis associated with rheumatoid arthritis. Am. J. Med. 2008. 121: S21S31.
  • 45
    Zhou, R., Tardivel, A., Thorens, B., Choi, I. and Tschopp, J., Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 2010. 11: 136140.
  • 46
    Carabeo, R. A., Mead, D. J. and Hackstadt, T., Golgi-dependent transport of cholesterol to the Chlamydia trachomatis inclusion. Proc. Natl. Acad. Sci. USA 2003. 100: 67716776.
  • 47
    Gurcel, L., Abrami, L., Girardin, S., Tschopp, J. and van der Goot, F. G., Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 2006. 126: 11351145.
  • 48
    Fabricant, C. G., Krook, L. and Gillespie, J. H., Virus-induced cholesterol crystals. Science 1973. 181: 566567.
  • 49
    Abdul-Sater, A. A., Koo, E., Hacker, G. and Ojcius, D. M., Inflammasome-dependent caspase-1 activation in cervical epithelial cells stimulates growth of the intracellular pathogen Chlamydia trachomatis. J. Biol. Chem. 2009. 284: 2678926796.
  • 50
    Keller, M., Ruegg, A., Werner, S. and Beer, H. D., Active caspase-1 is a regulator of unconventional protein secretion. Cell 2008. 132: 818831.
  • 51
    Hornung, V., Bauernfeind, F., Halle, A., Samstad, E. O., Kono, H., Rock, K. L., Fitzgerald, K. A. and Latz, E., Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 2008. 9: 847856.
  • 52
    Nakahira, K., Haspel, J. A., Rathinam, V. A., Lee, S. J., Dolinay, T., Lam, H. C., Englert, J. A. et al., Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 2011. 12: 222230.
  • 53
    Zhou, R., Yazdi, A. S., Menu, P. and Tschopp, J., A role for mitochondria in NLRP3 inflammasome activation. Nature 2011. 469: 221225.
  • 54
    Komatsu, M., Kurokawa, H., Waguri, S., Taguchi, K., Kobayashi, A., Ichimura, Y., Sou, Y. S. et al., The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 2010. 12: 213223.
  • 55
    Duran, J. M., Anjard, C., Stefan, C., Loomis, W. F. and Malhotra, V., Unconventional secretion of Acb1 is mediated by autophagosomes. J. Cell Biol. 2010. 188: 527536.
  • 56
    Li, P., Allen, H., Banerjee, S., Franklin, S., Herzog, L., Johnston, C., McDowell, J. et al., Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell 1995. 80: 401411.
  • 57
    Freigang, S., Horkko, S., Miller, E., Witztum, J. L. and Palinski, W., Immunization of LDL receptor-deficient mice with homologous malondialdehyde-modified and native LDL reduces progression of atherosclerosis by mechanisms other than induction of high titers of antibodies to oxidative neoepitopes. Arterioscler. Thromb. Vasc. Biol. 1998. 18: 19721982.