• 1
    Rock, K. L. and Goldberg, A. L., Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu. Rev. Immunol. 1999. 17: 739779.
  • 2
    Groll, M., Ditzel, L., Löwe, J., Stock, D., Bochtler, M., Bartunik, H. D. and Huber, R., Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 1997. 386: 463471.
  • 3
    Tanaka, K., Role of proteasomes modified by interferon-gamma in antigen processing. J. Leukocyte Biol. 1994. 56: 571575.
  • 4
    Murata, S., Sasaki, K., Kishimoto, T., Niwa, S., Hayashi, H., Takahama, Y. and Tanaka, K., Regulation of CD8+ T cell development by thymus-specific proteasomes. Science 2007. 316: 13491353.
  • 5
    Nitta, T., Murata, S., Sasaki, K., Fujii, H., Mat Ripen, A., Ishimaru, N., Koyasu, S. et al., Thymoproteasome shapes immunocompetent repertoire of CD8+ T cells. Immunity 2010. 32: 2940.
  • 6
    Takahama, Y., Nitta, T., Mat Ripen, A., Nitta, S., Murata, S. and Tanaka, K., Role of thymic cortex-specific self-peptides in positive selection of T cells. Semin. Immunol. 2010. 22: 287293.
  • 7
    Tomaru, U., Ishizu, A., Murata, S., Miyatake, Y., Suzuki, S., Takahashi, S., Kazamaki, T. et al., Exclusive expression of proteasome subunit β5t in the human thymic cortex. Blood 2009. 113: 51865191.
  • 8
    Burkly, L., Hession, C., Ogata, L., Reilly, C., Marconi, L. A., Olson, D., Tizard, R. et al., Expression of relB is required for the development of thymic medulla and dendritic cells. Nature 1995. 373: 531536.
  • 9
    Weih, F., Carrasco, D., Durham, S. K., Barton, D. S., Rizzo, C. A., Ryseck, R. P., Lira, S. A. and Bravo, R., Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, a member of the NF-κB/Rel family. Cell 1995. 80: 331340.
  • 10
    Shinkai, Y., Koyasu, S., Nakayama, K., Murphy, K. M., Loh, D. Y., Reinherz, E. L. and Alt, F. W., Restoration of T cell development in RAG-2-deficient mice by functional TCR transgenes. Science 1993. 259: 822825.
  • 11
    Ceredig, R. and Rolink, T., A positive look at double-negative thymocytes. Nat. Rev. Immunol. 2002. 2: 888897.
  • 12
    Wang, B., Biron, C., She, J., Higgins, K., Sunshine, M. J., Lacy, E., Lonberg, N. and Terhorst, C., A block in both early T lymphocyte and natural killer cell development in transgenic mice with high-copy numbers of the human CD3ε gene. Proc. Natl. Acad. Sci. USA 1994. 91: 94029406.
  • 13
    Tokoro, Y., Sugawara, T., Yaginuma, H., Nakauchi, H., Terhorst, C., Wang, B. and Takahama, Y., A mouse carrying genetic defect in the choice between T and B lymphocytes. J. Immunol. 1998. 161: 45914598.
  • 14
    Liu, C., Saito, F., Liu, Z., Lei, Y., Uehara, S., Love, P., Lipp, M. et al., Coordination between CCR7- and CCR9-mediated chemokine signals in prevascular fetal thymus colonization. Blood 2006. 108: 25312539.
  • 15
    Nehls, M., Pfeifer, D., Schorpp, M., Hedrich, H. and Boehm, T., New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature 1994. 372: 103107.
  • 16
    Nehls, M., Kyewski, B., Messerle, M., Waldschutz, R., Schuddekopf, K., Smith, A. J. and Boehm, T., Two genetically separable steps in the differentiation of thymic epithelium. Science 1996. 272: 886889.
  • 17
    Suniara, R. K., Jenkinson, E. J. and Owen, J. J., Studies on the phenotype of migrant thymic stem cells. Eur. J. Immunol. 1999. 29: 7580.
  • 18
    Nagamine, K., Peterson, P., Scott, H. S., Kudoh, J., Minoshima, S., Heino, M., Krohn, K. J. et al., Positional cloning of the APECED gene. Nat. Genet. 1997. 17: 393398.
  • 19
    Aaltonen, J., Björses, P., Perheentupa, J., Horelli-Kuitunen, N., Palotie, A., Peltonen, L., Lee, Y. S. et al., An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat. Genet. 1997. 17: 399403.
  • 20
    Zuklys, S., Balciunaite, G., Agarwal, A., Fasler-Kan, E., Palmer, E. and Holländer, G. A., Normal thymic architecture and negative selection are associated with Aire expression, the gene defective in the autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). J. Immunol. 2000. 165: 19761983.
  • 21
    Schaller, C. E., Wang, C. L., Beck-Engeser, G., Goss, L., Scott, H. S., Anderson, M. S. and Wabl, M., Expression of Aire and the early wave of apoptosis in spermatogenesis. J. Immunol. 2008. 180: 13381343.
  • 22
    Nishikawa, Y., Hirota, F., Yano, M., Kitajima, H., Miyazaki, J., Kawamoto, H., Mouri, Y. and Matsumoto, M., Biphasic Aire expression in early embryos and in medullary thymic epithelial cells before end-stage terminal differentiation. J. Exp. Med. 2010. 207: 963971.
  • 23
    Brissette, J. L., Li, J., Kamimura, J., Lee, D. and Dotto, G. P., The product of the mouse nude locus, Whn, regulates the balance between epithelial cell growth and differentiation. Genes Dev. 1996. 10: 22122221.
  • 24
    Hamazaki, Y., Fujita, H., Kobayashi, T., Choi, Y., Scott, H. S., Matsumoto, M. and Minato, N., Medullary thymic epithelial cells expressing Aire represent a unique lineage derived from cells expressing claudin. Nat. Immunol. 2007. 8: 304311.
  • 25
    Gordon, J., Wilson, V. A., Blair, N. F., Sheridan, J., Farley, A., Wilson, L., Manley, N. R. and Blackburn, C. C., Functional evidence for a single endodermal origin for the thymic epithelium. Nat. Immunol. 2004. 5: 546553.
  • 26
    Blackburn, C. C. and Manley, N. R., Developing a new paradigm for thymus organogenesis. Nat. Rev. Immunol. 2004. 4: 278289.
  • 27
    Rossi, S. W., Jenkinson, W. E., Anderson, G. and Jenkinson, E. J., Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium. Nature 2006. 441: 988991.
  • 28
    Bleul, C. C., Corbeaux, T., Reuter, A., Fisch, P., Mönting, J. S. and Boehm, T., Formation of a functional thymus initiated by a postnatal epithelial progenitor cell. Nature 2006. 441: 992996.
  • 29
    Weih, F., Durham, S. K., Barton, D. S., Sha, W. C., Baltimore, D. and Bravo, R., Both multiorgan inflammation and myeloid hyperplasia in RelB-deficient mice are T cell dependent. J. Immunol. 1996. 157: 39743979.
  • 30
    Holländer, G. A., Wang, B., Nichogiannopoulou, A., Platenburg, P. P., van Ewijk, W., Burakoff, S. J. et al., Developmental control point in induction of thymic cortex regulated by a subpopulation of prothymocytes. Nature 1995. 373: 350353.
  • 31
    Roberts, N. A., Desanti, G. E., Withers, D. R., Scott, H. R., Jenkinson, W. E., Lane, P. J., Jenkinson, E. J. and Anderson, G., Absence of thymus crosstalk in the fetus does not preclude hematopoietic induction of a functional thymus in the adult. Eur. J. Immunol. 2009. 39: 23952402.
  • 32
    Klug, D. B., Carter, C., Gimenez-Conti, I. B. and Richie, E. R., Thymocyte-independent and thymocyte-dependent phases of epithelial patterning in the fetal thymus. J. Immunol. 2002. 169: 28422845.
  • 33
    Shakib, S., Desanti, G. E., Jenkinson, W. E., Parnell, S. M., Jenkinson, E. J. and Anderson, G., Checkpoints in the development of thymic cortical epithelial cells. J. Immunol. 2009. 182: 130137.
  • 34
    Blackburn, C. C., Augustine, C. L., Li, R., Harvey, R. P., Malin, M. A., Boyd, R. L., Miller, J. F. and Morahan, G., The nu gene acts cell-autonomously and is required for differentiation of thymic epithelial progenitors. Proc. Natl. Acad. Sci. USA 1996. 93: 57425746.
  • 35
    Förster, R., Schubel, A., Breitfeld, D., Kremmer, E., Renner-Müller, I., Wolf, E. and Lipp, M., CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 1999. 99: 2333.
  • 36
    Uehara, S., Grinberg, A., Farber, J. M. and Love, P. E., A role for CCR9 in T lymphocyte development and migration. J. Immunol. 2002. 168: 28112819.
  • 37
    Mombaerts, P., Clarke, A. R., Rudnicki, M. A., Iacomini, J., Itohara, S., Lafaille, J. J., Wang, L. et al., Mutations in T-cell antigen receptor genes alpha and beta block thymocyte development at different stages. Nature 1992. 360: 225231.
  • 38
    Itohara, S., Mombaerts, P., Lafaille, J., Iacomini, J., Nelson, A., Clarke, A. R., Hooper, M. L. et al., T cell receptor δ gene mutant mice: independent generation of αβ T cells and programmed rearrangements of γδ TCR genes. Cell 1993. 72: 337348.
  • 39
    Godfrey, D. I., Izon, D. J., Tucek, C. L., Wilson, T. J. and Boyd, R. L., The phenotypic heterogeneity of mouse thymic stromal cells. Immunology 1990. 70: 6674.
  • 40
    Gray, D. H., Tull, D., Ueno, T., Seach, N., Classon, B. J., Chidgey, A., McConville, M. J. and Boyd, R. L., A unique thymic fibroblast population revealed by the monoclonal antibody MTS-15. J. Immunol. 2007. 178: 49564965.
  • 41
    van Vliet, E., Melis, M. and van Ewijk, W., Monoclonal antibodies to stromal cell types of the mouse thymus. Eur. J. Immunol. 1984. 14: 524529.
  • 42
    van Vliet, E., Melis, M. and van Ewijk, W., Immunohistology of thymic nurse cells. Cell. Immunol. 1984. 87: 101109.
  • 43
    Gray, D. H., Chidgey, A. P. and Boyd, R. L., Analysis of thymic stromal cell populations using flow cytometry. J. Immunol. Methods 2002. 260: 1528.
  • 44
    Hikosaka, Y., Nitta, T., Ohigashi, I., Yano, K., Ishimaru, N., Hayashi, Y., Matsumoto, M. et al., The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity 2008. 29: 438450.