SEARCH

SEARCH BY CITATION

References

  • 1
    Guadalupe, M., Reay, E., Sankaran, S., Prindiville, T., Flamm, J., McNeil, A. and Dandekar, S., Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. J. Virol. 2003. 77: 1170811717.
  • 2
    Mehandru, S., Poles, M. A., Tenner-Racz, K., Horowitz, A., Hurley, A., Hogan, C., Boden, D. et al., Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. J. Exp. Med. 2004. 200: 761770.
  • 3
    Sui, Y., Zhu, Q., Gagnon, S., Dzutsev, A., Terabe, M., Vaccari, M., Venzon, D. et al., Innate and adaptive immune correlates of vaccine and adjuvant-induced control of mucosal transmission of SIV in macaques. Proc. Natl. Acad. Sci. USA 2010. 107: 98439848.
  • 4
    Belyakov, I. M. and Berzofsky, J. A., Immunobiology of mucosal HIV infection and the basis for development of a new generation of mucosal AIDS vaccines. Immunity 2004. 20: 247253.
  • 5
    Veazey, R. S., DeMaria, M., Chalifoux, L. V., Shvetz, D. E., Pauley, D. R., Knight, H. L., Rosenzweig, M. et al., Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science 1998. 280: 427431.
  • 6
    Berzofsky, J. A., Ahlers, J., Janik, J., Morris, J., Oh, S., Terabe, M. and Belyakov, I. M., Progress on new vaccine strategies against chronic viral infections. J. Clin. Invest. 2004. 114: 450462.
  • 7
    Belyakov, I. M., Ahlers, J. D. and Berzofsky, J. A., Mucosal AIDS vaccines: current status and future directions. Expert Rev. Vaccines 2004. 3: 6573.
  • 8
    Belyakov, I. M. and Ahlers, J. D., What role does the route of immunization play in the generation of protective immunity against mucosal pathogens? J. Immunol. 2009. 183: 68836892.
  • 9
    Ahlers, J. D. and Belyakov, I. M., Strategies for optimizing targeting and delivery of mucosal HIV vaccines. Eur. J. Immunol. 2009. 39: 26572669.
  • 10
    Belyakov, I. M., Ahlers, J. D., Brandwein, B. Y., Earl, P., Kelsall, B. L., Moss, B., Strober, W. and Berzofsky, J. A., The Importance of local mucosal HIV-specific CD8+ cytotoxic T lymphocytes for resistance to mucosal-viral transmission in mice and enhancement of resistance by local administration of IL-12. J. Clin. Invest. 1998. 102: 20722081.
  • 11
    Belyakov, I. M., Derby, M. A., Ahlers, J. D., Kelsall, B. L., Earl, P., Moss, B., Strober, W. and Berzofsky, J. A., Mucosal immunization with HIV-1 peptide vaccine induces mucosal and systemic cytotoxic T lymphocytes and protective immunity in mice against intrarectal recombinant HIV-vaccinia challenge. Proc. Natl. Acad. Sci. USA 1998. 95: 17091714.
  • 12
    Belyakov, I. M., Ahlers, J. D., Clements, J. D., Strober, W. and Berzofsky, J. A., Interplay of cytokines and adjuvants in the regulation of mucosal and systemic HIV-specific cytotoxic T lymphocytes. J. Immunol. 2000. 165: 64546462.
  • 13
    Berzofsky, J. A., Ahlers, J. D. and Belyakov, I. M., Strategies for designing and optimizing new generation vaccines. Nat. Rev. Immunol. 2001. 1: 209219.
  • 14
    Pal, R., Venzon, D., Santra, S., Kalyanaraman, V. S., Montefiori, D. C., Hocker, L., Hudacik, L. et al., Systemic immunization with an ALVAC-HIV-1/protein boost vaccine strategy protects rhesus macaques from CD4+ T-cell loss and reduces both systemic and mucosal SHIVKU2 RNA levels. J. Virol. 2006. 80: 37323742.
  • 15
    Patel, V., Valentin, A., Kulkarni, V., Rosati, M., Bergamaschi, C., Jalah, R., Alicea, C. et al., Long-lasting humoral and cellular immune responses and mucosal dissemination after intramuscular DNA immunization. Vaccine 2010. 28: 48274836.
  • 16
    Kaufman, D. R., Bivas-Benita, M., Simmons, N. L., Miller, D. and Barouch, D. H., Route of adenovirus-based HIV-1 vaccine delivery impacts the phenotype and trafficking of vaccine-elicited CD8+T lymphocytes. J. Virol. 2010. 84: 59865996.
  • 17
    Becker, T. C., Wherry, E. J., Boone, D., Murali-Krishna, K., Antia, R., Ma, A. and Ahmed, R., Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells. J. Exp. Med. 2002. 195: 15411548.
  • 18
    Lodolce, J. P., Burkett, P. R., Boone, D. L., Chien, M. and Ma, A., T cell-independent interleukin 15ralpha signals are required for bystander proliferation. J. Exp. Med. 2001. 194: 11871194.
  • 19
    Prlic, M., Lefrancois, L. and Jameson, S. C., Multiple choices: regulation of memory CD8 T cell generation and homeostasis by interleukin (IL)-7 and IL-15. J. Exp. Med. 2002. 195: F49F52.
  • 20
    Geginat, J., Sallusto, F. and Lanzavecchia, A., Cytokine-driven proliferation and differentiation of human naive, central memory, and effector memory CD4(+) T cells. J. Exp. Med. 2001. 194: 17111719.
  • 21
    Berard, M., Brandt, K., Bulfone-Paus, S. and Tough, D. F., IL-15 promotes the survival of naive and memory phenotype CD8+ T cells. J. Immunol. 2003. 170: 50185026.
  • 22
    Manjunath, N., Shankar, P., Wan, J., Weninger, W., Crowley, M. A., Hieshima, K., Springer, T. A. et al., Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes. J. Clin. Invest. 2001. 108: 871878.
  • 23
    Judge, A. D., Zhang, X., Fujii, H., Surh, C. D. and Sprent, J., Interleukin 15 controls both proliferation and survival of a subset of memory-phenotype CD8(+) T cells. J. Exp. Med. 2002. 196: 935946.
  • 24
    Tan, J. T., Ernst, B., Kieper, W. C., LeRoy, E., Sprent, J. and Surh, C. D., Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J. Exp. Med. 2002. 195: 15231532.
  • 25
    Sato, N., Patel, H. J., Waldmann, T. A. and Tagaya, Y., The IL-15/IL-15Ralpha on cell surfaces enables sustained IL-15 activity and contributes to the long survival of CD8 memory T cells. Proc. Natl. Acad. Sci. USA 2007. 104: 588593.
  • 26
    Wu, Z., Xue, H. H., Bernard, J., Zeng, R., Issakov, D., Bollenbacher-Reilley, J., Belyakov, I. M. et al., The IL-15 receptor alpha chain cytoplasmic domain is critical for normal IL-15Ralpha function but is not required for trans-presentation. Blood 2008. 112: 44114419.
  • 27
    Roychowdhury, S., May, K. F., Jr., Tzou, K. S., Lin, T., Bhatt, D., Freud, A. G., Guimond, M. et al., Failed adoptive immunotherapy with tumor-specific T cells: reversal with low-dose interleukin 15 but not low-dose interleukin 2. Cancer Res. 2004. 64: 80628067.
  • 28
    Ahlers, J. D. and Belyakov, I. M., Memories that last forever: strategies for optimizing vaccine T-cell memory. Blood 2010. 115: 16781689.
  • 29
    Ahlers, J. D. and Belyakov, I. M., Lessons learned from natural infection: focusing on the design of protective T cell vaccines for HIV/AIDS. Trends Immunol. 2010. 31: 120130.
  • 30
    Ahlers, J. D. and Belyakov, I. M., Strategies for recruiting and targeting dendritic cells for optimizing HIV vaccines. Trends Mol. Med. 2009. 15: 263274.
  • 31
    Wherry, E. J. and Ahmed, R., Memory CD8 T-cell differentiation during viral infection. J. Virol. 2004. 78: 55355545.
  • 32
    Sallusto, F., Lenig, D., Forster, R., Lipp, M. and Lanzavecchia, A., Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999. 401: 708712.
  • 33
    Masopust, D., Vezys, V., Marzo, A. L. and Lefrancois, L., Preferential localization of effector memory cells in nonlymphoid tissue. Science 2001. 291: 24132417.
  • 34
    Masopust, D., Vezys, V., Wherry, E. J., Barber, D. L. and Ahmed, R., Cutting edge: gut microenvironment promotes differentiation of a unique memory CD8 T cell population. J. Immunol. 2006. 176: 20792083.
  • 35
    Schluns, K. S. and Lefrancois, L., Cytokine control of memory T-cell development and survival. Nat. Rev. Immunol. 2003. 3: 269279.
  • 36
    Tscharke, D. C., Karupiah, G., Zhou, J., Palmore, T., Irvine, K. R., Haeryfar, S. M., Williams, S. et al., Identification of poxvirus CD8+T cell determinants to enable rational design and characterization of smallpox vaccines. J. Exp. Med. 2005. 201: 95104.
  • 37
    Crawford, F., Kozono, H., White, J., Marrack, P. and Kappler, J., Detection of antigen-specific T cells with multivalent soluble class II MHC covalent peptide complexes. Immunity 1998. 8: 675682.
  • 38
    Nguyen, L. T., Elford, A. R., Murakami, K., Garza, K. M., Schoenberger, S. P., Odermatt, B., Speiser, D. E. and Ohashi, P. S., Tumor growth enhances cross-presentation leading to limited T cell activation without tolerance. J. Exp. Med. 2002. 195: 423435.
  • 39
    Goldrath, A. W., Sivakumar, P. V., Glaccum, M., Kennedy, M. K., Bevan, M. J., Benoist, C., Mathis, D. and Butz, E. A., Cytokine requirements for acute and Basal homeostatic proliferation of naive and memory CD8+ T cells. J. Exp. Med. 2002. 195: 15151522.
  • 40
    Laouar, A., Haridas, V., Vargas, D., Zhinan, X., Chaplin, D., van Lier, R. A. and Manjunath, N., CD70+ antigen-presenting cells control the proliferation and differentiation of T cells in the intestinal mucosa. Nat. Immunol. 2005. 6: 698706.
  • 41
    Jiang, W., Ferrero, I., Laurenti, E., Trumpp, A. and MacDonald, H. R., c-Myc controls the development of CD8alphaalpha TCRalphabeta intestinal intraepithelial lymphocytes from thymic precursors by regulating IL-15-dependent survival. Blood 2010. 115: 44314438.
  • 42
    Luckschander, N., Pfammatter, N. S., Sidler, D., Jakob, S., Burgener, I. A., Moore, P. F., Zurbriggen, A. et al., Phenotyping, functional characterization, and developmental changes in canine intestinal intraepithelial lymphocytes. Vet. Res. 2009. 40: 58.
  • 43
    Kim, S.-K., Reed, D. S., Heath, W. R., Carbone, F. and Lefrançois, L., Activation and migration of CD8 T cells in the intestinal mucosa1. J. Immunol. 1997. 159: 42954306.
  • 44
    Wu, M., van Kaer, L., Itohara, S. and Tonegawa, S., Highly restricted expression of the thymus leukemia antigens on intestinal epithelial cells. J. Exp. Med. 1991. 174: 213218.
  • 45
    Madakamutil, L. T., Christen, U., Lena, C. J., Wang-Zhu, Y., Attinger, A., Sundarrajan, M., Ellmeier, W. et al., CD8alphaalpha-mediated survival and differentiation of CD8 memory T cell precursors. Science 2004. 304: 590593.
  • 46
    Masopust, D., Choo, D., Vezys, V., Wherry, E. J., Duraiswamy, J., Akondy, R., Wang, J. et al., Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med. 2010. 207: 553564.
  • 47
    Gebhardt, T., Wakim, L. M., Eidsmo, L., Reading, P. C., Heath, W. R. and Carbone, F. R., Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 2009. 10: 524530.
  • 48
    Belyakov, I. M. and Ahlers, J. D., Functional CD8(+) CTLs in mucosal sites and HIV infection: moving forward toward a mucosal AIDS vaccine. Trends Immunol. 2008. 29: 574585.
  • 49
    Belyakov, I. M., Ahlers, J. D., Nabel, G. J., Moss, B. and Berzofsky, J. A., Generation of functionally active HIV-1 specific CD8(+) CTL in intestinal mucosa following mucosal, systemic or mixed prime-boost immunization. Virology 2008. 381: 106115.
  • 50
    Belyakov, I. M. and Ahlers, J. D., Mucosal immunity and HIV-1 infection: applications for mucosal AIDS vaccine development. Curr. Top. Microbiol. Immunol. 2011. In press.
  • 51
    Belyakov, I. M., Hel, Z., Kelsall, B., Kuznetsov, V. A., Ahlers, J. D., Nacsa, J., Watkins, D., et al., Mucosal AIDS vaccine reduces disease and viral load in gut reservoir and blood after mucosal infection of macaques. Nat. Med. 2001. 7: 13201326.
  • 52
    Belyakov, I. M., Isakov, D., Zhu, Q., Dzutsev, A. and Berzofsky, J. A., A novel functional CTL avidity/activity compartmentalization to the site of mucosal immunization contributes to protection of macaques against simian/human immunodeficiency viral depletion of mucosal CD4+ T cells. J. Immunol. 2007. 178: 72117221.
  • 53
    Isakov, D., Dzutsev, A., Belyakov, I. M. and Berzofsky, J. A., Non-equilibrium and differential function between intraepithelial and lamina propria virus-specific TCRalphabeta(+) CD8alphabeta(+) T cells in the small intestinal mucosa. Mucosal Immunol. 2009. 2: 450461.
  • 54
    Oh, S., Perera, L. P., Burke, D. S., Waldmann, T. A. and Berzofsky, J. A., IL-15/IL-15R alpha-mediated avidity maturation of memory CD8+ T cells. Proc. Natl. Acad. Sci. USA 2004. 101: 1515415159.
  • 55
    Waldmann, T. A., Dubois, S. and Tagaya, Y., Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 2001. 14: 105110.
  • 56
    Burkett, P. R., Koka, R., Chien, M., Chai, S., Chan, F., Ma, A. and Boone, D. L., IL-15R alpha expression on CD8+ T cells is dispensable for T cell memory. Proc. Natl. Acad. Sci. USA 2003. 100: 47244729.
  • 57
    Kunisawa, J., Kurashima, Y., Higuchi, M., Gohda, M., Ishikawa, I., Ogahara, I., Kim, N. et al., Sphingosine 1-phosphate dependence in the regulation of lymphocyte trafficking to the gut epithelium. J. Exp. Med. 2007. 204: 23352348.
  • 58
    Porter, B. O. and Malek, T. R., IL-2Rbeta/IL-7Ralpha doubly deficient mice recapitulate the thymic and intraepithelial lymphocyte (IEL) developmental defects of gammac-/- mice: roles for both IL-2 and IL-15 in CD8alphaalpha IEL development. J. Immunol. 1999. 163: 59065912.
  • 59
    Malek, T. R., Levy, R. B., Adkins, B. and He, Y. W., Monoclonal antibodies to the common gamma-chain as cytokine receptor antagonists in vivo: effect on intrathymic and intestinal intraepithelial T lymphocyte development. J. Leukoc. Biol. 1998. 63: 643649.
  • 60
    Kennedy, M. K., Glaccum, M., Brown, S. N., Butz, E. A., Viney, J. L., Embers, M., Matsuki, N. et al., Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J. Exp. Med. 2000. 191: 771780.
  • 61
    Kaneko, M., Mizunuma, T., Takimoto, H. and Kumazawa, Y., Development of TCR alpha beta CD8 alpha alpha intestinal intraepithelial lymphocytes is promoted by interleukin-15-producing epithelial cells constitutively stimulated by gram-negative bacteria via TLR4. Biol. Pharm. Bull. 2004. 27: 883889.
  • 62
    Suzuki, H., Duncan, G. S., Takimoto, H. and Mak, T. W., Abnormal development of intestinal intraepithelial lymphocytes and peripheral natural killer cells in mice lacking the IL-2 receptor beta chain. J. Exp. Med. 1997. 185: 499505.
  • 63
    Laky, K., Lefrancois, L., Lingenheld, E. G., Ishikawa, H., Lewis, J. M., Olson, S., Suzuki, K. et al., Enterocyte expression of interleukin 7 induces development of gammadelta T cells and Peyer's patches. J. Exp. Med. 2000. 191: 15691580.
  • 64
    Ohta, N., Hiroi, T., Kweon, M. N., Kinoshita, N., Jang, M. H., Mashimo, T., Miyazaki, J. and Kiyono, H., IL-15-dependent activation-induced cell death-resistant Th1 type CD8 alpha beta+NK1.1+T cells for the development of small intestinal inflammation. J. Immunol. 2002. 169: 460468.
  • 65
    Shires, J., Theodoridis, E. and Hayday, A. C., Biological insights into TCRgammadelta+ and TCRalphabeta+intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity 2001. 15: 419434.
  • 66
    Dubois, S., Waldmann, T. A. and Muller, J. R., ITK and IL-15 support two distinct subsets of CD8+T cells. Proc. Natl. Acad. Sci. USA 2006. 103: 1207512080.
  • 67
    Matsuyama, T., Kimura, T., Kitagawa, M., Pfeffer, K., Kawakami, T., Watanabe, N., Kundig, T. M. et al., Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development. Cell 1993. 75: 8397.
  • 68
    Ohteki, T., Yoshida, H., Matsuyama, T., Duncan, G. S., Mak, T. W. and Ohashi, P. S., The transcription factor interferon regulatory factor 1 (IRF-1) is important during the maturation of natural killer 1.1+ T cell receptor-alpha/beta+(NK1+T) cells, natural killer cells, and intestinal intraepithelial T cells. J. Exp. Med. 1998. 187: 967972.
  • 69
    Huleatt, J. W. and Lefrancois, L., Beta2 integrins and ICAM-1 are involved in establishment of the intestinal mucosal T cell compartment. Immunity 1996. 5: 263273.
  • 70
    Yajima, T., Nishimura, H., Sad, S., Shen, H., Kuwano, H. and Yoshikai, Y., A novel role of IL-15 in early activation of memory CD8+CTL after reinfection. J. Immunol. 2005. 174: 35903597.
  • 71
    Ahlers, J. D., Belyakov, I. M. and Berzofsky, J. A., Cytokine, chemokine and costimulatory molecule modulation to enhance efficacy of HIV vaccines. Curr. Mol. Med. 2003. 3: 285301.
  • 72
    Ahlers, J. D., Belyakov, I. M., Thomas, E. K. and Berzofsky, J. A., High affinity T-helper epitope induces complementary helper and APC polarization, increased CTL and protection against viral infection. J. Clin. Invest. 2001. 108: 16771685.
  • 73
    Ahlers, J. D., Belyakov, I. M., Matsui, S. and Berzofsky, J. A., Mechanisms of cytokine synergy essential for vaccine protection against viral challenge. Int. Immunol. 2001. 13: 897908.
  • 74
    Hodge, J. W., Grosenbach, D. W., Rad, A. N., Giuliano, M., Sabzevari, H. and Schlom, J., Enhancing the potency of peptide-pulsed antigen presenting cells by vector-driven hyperexpression of a triad of costimulatory molecules. Vaccine 2001. 19: 35523567.
  • 75
    Zhu, Q., Egelston, C., Vivekanandhan, A., Uematsu, S., Akira, S., Klinman, D. M., Belyakov, I. M. and Berzofsky, J. A., Toll-like receptor ligands synergize through distinct dendritic cell pathways to induce T cell responses: implications for vaccines. Proc. Natl. Acad. Sci. USA 2008. 105: 1626016265.
  • 76
    Zhu, Q., Egelston, C., Gagnon, S., Sui, Y., Belyakov, I. M., Klinman, D. M. and Berzofsky, J. A., Using 3 TLR ligands as a combination adjuvant induces qualitative changes in T cell responses needed for antiviral protection in mice. J. Clin. Invest. 2010. 120: 607616.
  • 77
    Staats, H. F., Bradney, C. P., Gwinn, W. M., Jackson, S. S., Sempowski, G. D., Liao, H. X., Letvin, N. L. and Haynes, B. F., Cytokine requirements for induction of systemic and mucosal CTL after nasal immunization. J. Immunol. 2001. 167: 53865394.
  • 78
    Ahlers, J. D., Belyakov, I. M., Terabe, M., Koka, R., Donaldson, D. D., Thomas, E. and Berzofsky, J. A., A push-pull approach to maximize vaccine efficacy: abrogating suppression with an IL-13 inhibitor while augmenting help with GM-CSF and CD40L. Proc. Natl. Acad. Sci. USA 2002. 99: 1302013025.
  • 79
    Palazzo, M., Gariboldi, S., Zanobbio, L., Selleri, S., Dusio, G. F., Mauro, V., Rossini, A. et al., Sodium-dependent glucose transporter-1 as a novel immunological player in the intestinal mucosa. J. Immunol. 2008. 181: 31263136.
  • 80
    Ina, K., Kusugami, K., Kawano, Y., Nishiwaki, T., Wen, Z., Musso, A., West, G. A., et al., Intestinal fibroblast-derived IL-10 increases survival of mucosal T cells by inhibiting growth factor deprivation- and Fas-mediated apoptosis. J. Immunol. 2005. 175: 20002009.
  • 81
    Brunner, T., Arnold, D., Wasem, C., Herren, S. and Frutschi, C., Regulation of cell death and survival in intestinal intraepithelial lymphocytes. Cell Death Differ. 2001. 8: 706714.
  • 82
    Eagle, R. A. and Trowsdale, J., Promiscuity and the single receptor: NKG2D. Nat. Rev. Immunol. 2007. 7: 737744.
  • 83
    Jamieson, A. M., Diefenbach, A., McMahon, C. W., Xiong, N., Carlyle, J. R. and Raulet, D. H., The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity 2002. 17: 1929.
  • 84
    Dhanji, S. and Teh, H. S., IL-2-activated CD8+CD44high cells express both adaptive and innate immune system receptors and demonstrate specificity for syngeneic tumor cells. J. Immunol. 2003. 171: 34423450.
  • 85
    Pardigon, N., Darche, S., Kelsall, B., Bennink, J. R. and Yewdell, J. W., The TL MHC class Ib molecule has only marginal effects on the activation, survival and trafficking of mouse small intestinal intraepithelial lymphocytes. Int. Immunol. 2004. 16: 13051313.
  • 86
    Mayr, A., Hochstein-Mintzel, V. and Stickl, H., Abstammung, eigenschaften and verwendung des attenuierten vaccinia-stammes MVA. Infection 1975. 3: 614.
  • 87
    Belyakov, I. M., Wyatt, L. S., Ahlers, J. D., Earl, P., Pendleton, C. D., Kelsall, B. L., Strober, W. et al., Induction of mucosal CTL response by intrarectal immunization with a replication-deficient recombinant vaccinia virus expressing HIV 89.6 envelope protein. J. Virol. 1998. 72: 82648272.
  • 88
    Dzutsev, A. H., Belyakov, I. M., Isakov, D. V., Margulies, D. H. and Berzofsky, J. A., Avidity of CD8 T cells sharpens immunodominance. Int. Immunol. 2007. 19: 497507.
  • 89
    Belyakov, I. M., Isakov, D., Zhu, Q., Dzutsev, A., Klinman, D. and Berzofsky, J. A., Enhancement of CD8+ T cell immunity in the lung by CpG ODN increases protective efficacy of a Modified Vaccinia Ankara vaccine against lethal poxvirus infection even in CD4-deficient host. J. Immunol. 2006. 177: 63366343.