• 1
    Zhang, L., Conejo-Garcia, J. R., Katsaros, D., Gimotty, P. A., Massobrio, M., Regnani, G., Makrigiannakis, A. et al., Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med. 2003. 348: 203213.
  • 2
    Sato, E., Olson, S. H., Ahn, J., Bundy, B., Nishikawa, H., Qian, F., Jungbluth, A. A. et al., Intraepithelial CD8+tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc. Natl. Acad. Sci. USA 2005. 102: 1853818543.
  • 3
    Tomsova, M., Melichar, B., Sedlakova, I. and Steiner, I., Prognostic significance of CD3+tumor-infiltrating lymphocytes in ovarian carcinoma. Gynecol. Oncol. 2008. 108: 415-420.
  • 4
    Odunsi, K. and Sabbatini, P., Harnessing the immune system for ovarian cancer therapy. Am. J. Reprod. Immunol. 2008. 59: 6274.
  • 5
    Pichlmair, A. and Reis e Sousa, C., Innate recognition of viruses. Immunity 2007. 27: 370383.
  • 6
    Barchet, W., Wimmenauer, V., Schlee, M. and Hartmann, G., Accessing the therapeutic potential of immunostimulatory nucleic acids. Curr. Opin. Immunol. 2008. 20: 389395.
  • 7
    Besch, R., Poeck, H., Hohenauer, T., Senft, D., Hacker, G., Berking, C., Hornung, V. et al., Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human melanoma cells. J. Clin. Invest. 2009. 119: 23992411.
  • 8
    Chattopadhyay, S., Marques, J. T., Yamashita, M., Peters, K. L., Smith, K., Desai, A., Williams, B. R. and Sen, G. C., Viral apoptosis is induced by IRF-3-mediated activation of Bax. Embo J. 2010. 29: 17621773.
  • 9
    Schlee, M., Hartmann, E., Coch, C., Wimmenauer, V., Janke, M., Barchet, W. and Hartmann, G., Approaching the RNA ligand for RIG-I? Immunol. Rev. 2009. 227: 6674.
  • 10
    Poeck, H., Besch, R., Maihoefer, C., Renn, M., Tormo, D., Morskaya, S. S., Kirschnek, S. et al., 5′-Triphosphate-siRNA: turning gene silencing and Rig-I activation against melanoma. Nat. Med. 2008. 14: 12561263.
  • 11
    Kubler, K., Gehrke, N., Riemann, S., Bohnert, V., Zillinger, T., Hartmann, E., Polcher, M. et al., Targeted activation of RNA helicase retinoic acid-inducible gene-I induces proimmunogenic apoptosis of human ovarian cancer cells. Cancer Res. 2010. 70: 5293-5304.
  • 12
    Gitlin, L., Barchet, W., Gilfillan, S., Cella, M., Beutler, B., Flavell, R. A., Diamond, M. S. and Colonna, M., Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc. Natl. Acad. Sci. USA 2006. 103: 84598464.
  • 13
    Kato, H., Takeuchi, O., Sato, S., Yoneyama, M., Yamamoto, M., Matsui, K., Uematsu, S. et al., Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 2006. 441: 101105.
  • 14
    Alexopoulou, L., Holt, A. C., Medzhitov, R. and Flavell, R. A., Recognition of double-stranded RNA and activation of NF-kappaB by toll-like receptor 3. Nature 2001. 413: 732738.
  • 15
    Tormo, D., Checinska, A., Alonso-Curbelo, D., Perez-Guijarro, E., Canon, E., Riveiro-Falkenbach, E., Calvo, T. G. et al., Targeted activation of innate immunity for therapeutic induction of autophagy and apoptosis in melanoma cells. Cancer Cell 2009. 16: 103114.
  • 16
    Goubau, D., Romieu-Mourez, R., Solis, M., Hernandez, E., Mesplede, T., Lin, R., Leaman, D. and Hiscott, J., Transcriptional re-programming of primary macrophages reveals distinct apoptotic and anti-tumoral functions of IRF-3 and IRF-7. Eur. J. Immunol. 2009. 39: 527540.
  • 17
    Zitvogel, L. and Kroemer, G., Anticancer immunochemotherapy using adjuvants with direct cytotoxic effects. J. Clin. Invest. 2009. 119: 21272130.
  • 18
    Eisenthal, A., Polyvkin, N., Bramante-Schreiber, L., Misonznik, F., Hassner, A. and Lifschitz-Mercer, B., Expression of dendritic cells in ovarian tumors correlates with clinical outcome in patients with ovarian cancer. Hum. Pathol. 2001. 32: 803807.
  • 19
    Melichar, B., Savary, C. A., Patenia, R., Templin, S., Melicharova, K. and Freedman, R. S., Phenotype and antitumor activity of ascitic fluid monocytes in patients with ovarian carcinoma. Int. J. Gynecol. Cancer 2003. 13: 435443.
  • 20
    Nguyen, K. B., Watford, W. T., Salomon, R., Hofmann, S. R., Pien, G. C., Morinobu, A., Gadina, M. et al., Critical role for STAT4 activation by type 1 interferons in the interferon-gamma response to viral infection. Science 2002. 297: 20632066.
  • 21
    Alter, G., Malenfant, J. M. and Altfeld, M., CD107a as a functional marker for the identification of natural killer cell activity. J. Immunol. Methods 2004. 294: 1522.
  • 22
    Roby, K. F., Taylor, C. C., Sweetwood, J. P., Cheng, Y., Pace, J. L., Tawfik, O., Persons, D. L. et al., Development of a syngeneic mouse model for events related to ovarian cancer. Carcinogenesis 2000. 21: 585591.
  • 23
    Yoneda, K., Sugimoto, K., Shiraki, K., Tanaka, J., Beppu, T., Fuke, H., Yamamoto, N. et al., Dual topology of functional toll-like receptor 3 expression in human hepatocellular carcinoma: differential signaling mechanisms of TLR3-induced NF-kappaB activation and apoptosis. Int. J. Oncol. 2008. 33: 929936.
  • 24
    Salaun, B., Coste, I., Rissoan, M. C., Lebecque, S. J. and Renno, T., TLR3 can directly trigger apoptosis in human cancer cells. J. Immunol. 2006. 176: 48944901.
  • 25
    Weber, A., Kirejczyk, Z., Besch, R., Potthoff, S., Leverkus, M. and Hacker, G., Proapoptotic signalling through toll-like receptor-3 involves TRIF-dependent activation of caspase-8 and is under the control of inhibitor of apoptosis proteins in melanoma cells. Cell Death Differ. 2009. 17: 942951.
  • 26
    Paone, A., Starace, D., Galli, R., Padula, F., De Cesaris, P., Filippini, A., Ziparo, E. and Riccioli, A., Toll-like receptor 3 triggers apoptosis of human prostate cancer cells through a PKC-alpha-dependent mechanism. Carcinogenesis 2008. 29: 13341342.
  • 27
    Andre, F., Sabourin, J. C., Assi, H., Miran, I., Podolsky, D., Spielmann, M. and Zitvogel, L., Targeting Toll like receptor 3 by double stranded RNA in breast cancer: results from in vitro studies and randomized trial. J. Clin. Oncol. 2004. 22: 9619.
  • 28
    Rolland, P., Deen, S., Scott, I., Durrant, L. and Spendlove, I., Human leukocyte antigen class I antigen expression is an independent prognostic factor in ovarian cancer. Clin. Cancer Res. 2007. 13: 35913596.
  • 29
    Dunn, G. P., Koebel, C. M. and Schreiber, R. D., Interferons, immunity and cancer immunoediting. Nat. Rev. Immunol. 2006. 6: 836848.
  • 30
    Berek, J. S., Hacker, N. F., Lichtenstein, A., Jung, T., Spina, C., Knox, R. M., Brady, J. et al., Intraperitoneal recombinant alpha-interferon for “salvage” immunotherapy in stage III epithelial ovarian cancer: a Gynecologic Oncology Group Study. Cancer Res. 1985. 45: 44474453.
  • 31
    McCartney, S., Vermi, W., Gilfillan, S., Cella, M., Murphy, T. L., Schreiber, R. D., Murphy, K. M. and Colonna, M., Distinct and complementary functions of MDA5 and TLR3 in poly(I:C)-mediated activation of mouse NK cells. J. Exp. Med. 2009. 206: 29672976.
  • 32
    North, J., Bakhsh, I., Marden, C., Pittman, H., Addison, E., Navarrete, C., Anderson, R. and Lowdell, M. W., Tumor-primed human natural killer cells lyse NK-resistant tumor targets: evidence of a two-stage process in resting NK-cell activation. J. Immunol. 2007. 178: 8594.
  • 33
    Marth, C., Fiegl, H., Zeimet, A. G., Muller-Holzner, E., Deibl, M., Doppler, W. and Daxenbichler, G., Interferon-gamma expression is an independent prognostic factor in ovarian cancer. Am. J. Obstet. Gynecol. 2004. 191: 15981605.
  • 34
    Windbichler, G. H., Hausmaninger, H., Stummvoll, W., Graf, A. H., Kainz, C., Lahodny, J. et al., Interferon-gamma in the first-line therapy of ovarian cancer: a randomized phase III trial. Br. J. Cancer 2000. 82: 11381144.
  • 35
    Lotzova, E., Savary, C. A., Freedman, R. S. and Bowen, J. M., Natural killer cell cytotoxic potential of patients with ovarian carcinoma and its modulation with virus-modified tumor cell extract. Cancer Immunol. Immunother. 1984. 17: 124129.
  • 36
    Chiang, C. L., Benencia, F. and Coukos, G., Whole tumor antigen vaccines. Semin. Immunol. 2010. 22: 132143.
  • 37
    Shepherd, T. G., Theriault, B. L., Campbell, E. J. and Nachtigal, M. W., Primary culture of ovarian surface epithelial cells and ascites-derived ovarian cancer cells from patients. Nat. Protoc. 2006. 1: 26432649.
  • 38
    Benard, J., Da Silva, J., De Blois, M. C., Boyer, P., Duvillard, P., Chiric, E. and Riou, G., Characterization of a human ovarian adenocarcinoma line, IGROV1, in tissue culture and in nude mice. Cancer Res. 1985. 45: 49704979.
  • 39
    Fogh, J., Fogh, J. M. and Orfeo, T., One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J. Natl. Cancer Inst. 1977. 59: 221226.
  • 40
    Schondorf, T., Hoopmann, M., Breidenbach, M., Rein, D. T., Gohring, U. J., Becker, M., Mallmann, P. and Kurbacher, C. M., Dysregulation of protein kinase C activity in chemoresistant metastatic breast cancer cells. Anticancer Drugs 2004. 15: 265268.
  • 41
    van Engeland, M., Ramaekers, F. C., Schutte, B. and Reutelingsperger, C. P., A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture. Cytometry 1996. 24: 131139.
  • 42
    Riccardi, C. and Nicoletti, I., Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat. Protoc. 2006. 1: 14581461.
  • 43
    Kane, K. L., Ashton, F. A., Schmitz, J. L. and Folds, J. D., Determination of natural killer cell function by flow cytometry. Clin. Diagn. Lab. Immunol. 1996. 3: 295300.