SEARCH

SEARCH BY CITATION

References

  • 1
    Sakaguchi, S., Yamaguchi, T., Nomura, T. and Ono, M., Regulatory T cells and immune tolerance. Cell 2008. 133: 775787.
  • 2
    Fontenot, J. D., Dooley, J. L., Farr, A. G. and Rudensky, A. Y., Developmental regulation of Foxp3 expression during ontogeny. J. Exp. Med. 2005. 202: 901906.
  • 3
    Josefowicz, S. Z., Lu, L-F. and Rudensky, A. Y., Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 2012. 30: 531564.
  • 4
    Bodor, J., Spetz, A. L., Strominger, J. L. and Habener, J. F., cAMP inducibility of transcriptional repressor ICER in developing and mature human T lymphocytes. Proc. Natl. Acad. Sci. U.S.A. 1996. 93: 35363541.
  • 5
    Vendetti, S., Riccomi, A., Sacchi, A., Gatta, L., Pioli, C. and De Magistris, M. T., Cyclic adenosine 5′-monophosphate and calcium induce CD152 (CTLA-4) up-regulation in resting CD4+T lymphocytes. J. Immunol. 2002. 169: 62316235.
  • 6
    Nabavi, N., Freeman, G. J., Gault, A., Godfrey, D., Nadler, L. M. and Glimcher, L. H., Signalling through the MHC class II cytoplasmic domain is required for antigen presentation and induces B7 expression. Nature 1992. 360: 266268.
  • 7
    Tang, Q. and Bluestone, J. A., The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat. Immunol. 2008. 9: 239244.
  • 8
    Molina, C. A., Foulkes, N. S., Lalli, E. and Sassone-Corsi, P., Inducibility and negative autoregulation of CREM: an alternative promoter directs the expression of ICER, an early response repressor. Cell 1993. 75: 875886.
  • 9
    Bopp, T., Becker, C., Klein, M., Klein-Hessling, S., Palmetshofer, A., Serfling, E., Heib, V. et al., Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression. J. Exp. Med. 2007. 204: 13031310.
  • 10
    Gavin, M. A., Clarke, S. R., Negrou, E., Gallegos, A. and Rudensky, A., Homeostasis and anergy of CD4+CD25+ suppressor T cells in vivo. Nat. Immunol. 2002. 3: 3341.
  • 11
    Bodor, J., Bodorova, J. and Gress, R., Suppression of T cell function: a potential role for transcriptional repressor ICER. J. Leukoc. Biol. 2000. 67: 774779.
  • 12
    Bodor, J., Fehervari, Z., Diamond, B. and Sakaguchi, S., ICER/CREM-mediated transcriptional attenuation of IL-2 and its role in suppression by regulatory T cells. Eur. J. Immunol. 2007. 37: 884895.
  • 13
    Bodor, J., Feigenbaum, L., Bodorova, J., Bare, C., Reitz, M. and Gress, R., Suppression of T-cell responsiveness by inducible cAMP early repressor (ICER). J. Leukoc. Biol. 2001 69: 10531059.
  • 14
    Barton, K., Muthusamy, N., Chanyangam, M., Fischer, C., Clendenin, C. and Leiden, J. M., Defective thymocyte proliferation and IL-2 production in transgenic mice expressing a dominant-negative form of CREB. Nature 1996. 379: 8185.
  • 15
    Thornton, A. M., Donovan, E. E., Piccirillo, C. A. and Shevach, E. M., Cutting edge: IL-2 is critically required for the in vitro activation of CD4+CD25+T cell suppressor function. J. Immunol. 2004. 172: 65196523.
  • 16
    Vignali, D. A., Collison, L. W. and Workman, C. J., How regulatory T cells work. Nat. Rev. Immunol. 2008. 8: 523532.
  • 17
    Thornton, A. and Shevach, E., CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 1998. 188: 287296.
  • 18
    Gavin, M. A., Rasmussen, J. P., Fontenot, J. D., Vasta, V., Manganiello, V. C., Beavo, J. A. and Rudensky, A. Y., Foxp3-dependent programme of regulatory T-cell differentiation. Nature 2007. 445: 771775.
  • 19
    Zheng, Y., Josefowicz, S., Chaudhry, A., Peng, X. P., Forbush, K. and Rudensky, A. Y., Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 2010. 463: 808812.
  • 20
    Huang, B., Zhao, J., Lei, Z., Shen, S., Li, D., Shen, G.-X., Zhang, G.-M. et al., miR-142-3p restricts cAMP production in CD4+CD25T cells and CD4+CD25 +TREG cells by targeting AC9 mRNA. EMBO Rep. 2009. 10: 180185.
  • 21
    Conche, C., Boulla, G., Trautmann, A. and Randriamampita, C., T cell adhesion primes antigen receptor-induced calcium responses through a transient rise in adenosine 3′,5′-cyclic monophosphate. Immunity 2009. 30: 3343.
  • 22
    Becker, C., Taube, C., Bopp, T., Becker, C., Michel, K., Kubach, J., Reuter, S. et al., Protection from graft-versus-host disease by HIV-1 envelope protein gp120-mediated activation of human CD4+CD25+ regulatory T cells. Blood 2009. 114: 12631269.
  • 23
    Taskén, K., Waking up regulatory T cells. Blood 2009. 114: 11361137.
  • 24
    Mehlmann, L. M., Saeki, Y., Tanaka, S., Brennan, T. J., Evsikov, A. V., Pendola, F. L., Knowles, B. B. et al., The Gs-linked receptor GPR3 maintains meiotic arrest in mammalian oocytes. Science 2004. 306: 19471950.
  • 25
    Hansen, W., Loser, K., Westendorf, A. M., Bruder, D., Pfoertner, S., Siewert, C., Huehn, J. et al., G protein-coupled receptor 83 overexpression in naive CD4+CD25T cells leads to the induction of Foxp3 +regulatory T cells in vivo. J. Immunol. 2006. 177: 209215.
  • 26
    Kim, H. P. and Leonard, W. J., CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J. Exp. Med. 2007. 204: 15431551.
  • 27
    Hori, S., Nomura, T. and Sakaguchi, S., Control of regulatory T cell development by the transcription factor Foxp3. Science 2003. 299: 10571061.
  • 28
    Vaeth, M., Gogishvili, T., Bopp, T., Klein, M., Berberich-Siebelt, F., Gattenloehner, S., Avots, A. et al., Regulatory T cells facilitate the nuclear accumulation of inducible cAMP early repressor (ICER) and suppress nuclear factor of activated T cell c1 (NFATc1). Proc. Natl. Acad. Sci. U.S.A. 2011. 108: 24802485.
  • 29
    Zheng, Y., Josefowicz, S. Z., Kas, A., Chu, T.-T., Gavin, M. A. and Rudensky, A. Y., Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 2007. 445: 936940.
  • 30
    Marson, A., Kretschmer, K., Frampton, G. M., Jacobsen, E. S., Polansky, J. K., MacIsaac, K. D., Levine, S. S. et al., Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 2007. 445: 931935.
  • 31
    Sojka, D. K., Huang, Y.-H. and Fowell, D. J., Mechanisms of regulatory T-cell suppression - a diverse arsenal for a moving target. Immunology 2008. 124: 1322.
  • 32
    Cardone, J., Le Friec, G., Vantourout, P., Roberts, A., Fuchs, A., Jackson, I., Suddason, T. et al., Complement regulator CD46 temporally regulates cytokine production by conventional and unconventional T cells. Nat. Immunol. 2010. 9: 862871.
  • 33
    Bodor, J., Feigenbaum, L., Bodorova, J., Bare, C., Reitz, M. S. and Gress, R. E., Suppression of T cell-responsiveness by inducible cAMP early repressor (ICER). J. Leukoc. Biol. 2001. 69: 10531059.
  • 34
    Lahl, K., Mayer, C. T., Bopp, T., Huehn, J., Loddenkemper, C., Eberl, G., Wirnsberger, G. et al., Nonfunctional regulatory T cells and defective control of Th2 cytokine production in natural scurfy mutant mice. J. Immunol. 2009. 183: 56625672.
  • 35
    Lahl, K., Loddenkemper, C., Drouin, C., Freyer, J., Arnason, J., Eberl, G., Hamann, A. et al., Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J. Exp. Med. 2007. 204: 5763.
  • 36
    Gogishvili, T., Langenhorst, D., Lühder, F., Elias, F., Elflein, K., Dennehy, K. M., Gold, R. et al., Rapid regulatory T-cell response prevents cytokine storm in CD28 superagonist treated mice. PLoS One 2009. 4: e4643.
  • 37
    Yehia, G., Schlotter, F., Razavi, R., Alessandrini, A. and Molina, C. A., Mitogen-activated protein kinase phosphorylates and targets inducible cAMP early repressor to ubiquitin-mediated destruction. J. Biol. Chem. 2001. 276: 3527235279.
  • 38
    Memin, E., Genzale, M., Crow, M. and Molina, C. A. Evidence that phosphorylation by the mitotic kinase Cdk1 promotes ICER monoubiquitination and nuclear delocalization. Exp. Cell. Res. 2011. 317: 24902502.
  • 39
    Abrahamsen, H., Baillie, G., Ngai, J., Vang, T., Nika, K., Ruppelt, A., Mustelin, T. et al., TCR-and CD28-mediated recruitment of phosphodiesterase 4 to lipid rafts potentiates TCR signaling 1. J. Immunol. 2004. 173: 48474858.
  • 40
    Klein, M., Vaeth, M., Scheel, T., Grabbe, S., Baumgrass, R., Berberich-Siebelt, F., Bopp, T. et al., Repression of cyclic adenosine monophosphate upregulation disarms and expands human regulatory T cells. J. Immunol. 2012. 188: 10911097.
  • 41
    Sumpter, T. L., Payne, K. K. and Wilkes, D. S., Regulation of the NFAT pathway discriminates CD4+CD25+ regulatory T cells from CD4+CD25 helper T cells. J. Leukoc. Biol. 2008. 83: 708717.
  • 42
    Wu, Y., Borde, M., Heissmeyer, V., Feuerer, M., Lapan, A. D., Stroud, J. C., Bates, D. L. et al., FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 2006. 126: 375387.
  • 43
    Hogan, P. G., Chen, L., Nardone, J. and Rao, A., Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 2003. 17: 22052232.
  • 44
    Bodor, J. and Habener, J. F., Role of transcriptional repressor ICER in cyclic AMP-mediated attenuation of cytokine gene expression in human thymocytes. J. Biol. Chem. 1998. 273: 95449551.
  • 45
    Bopp, T., Palmetshofer, A., Serfling, E., Heib, V., Schmitt, S., Richter, C., Klein, M. et al., NFATc2 and NFATc3 transcription factors play a crucial role in suppression of CD4+T lymphocytes by CD4+CD25+ regulatory T cells. J. Exp. Med. 2005. 201: 181187.
  • 46
    Kyttaris, V. C., Juang, Y.-T., Tenbrock, K., Weinstein, A. and Tsokos, G. C., Cyclic adenosine 5′-monophosphate response element modulator is responsible for the decreased expression of c-fos and activator protein-1 binding in T cells from patients with systemic lupus erythematosus. J. Immunol. 2004. 173: 35573563.
  • 47
    Wing, K., Onishi, Y., Prieto-Martin, P., Yamaguchi, T., Miyara, M., Fehervari, Z., Nomura, T. et al., CTLA-4 control over Foxp3+ regulatory T cell function. Science 2008. 322: 271275.
  • 48
    Read, S., Malmstrom, V. and Powrie, F., Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J. Exp. Med. 2000. 192: 295302.
  • 49
    Takahashi, T., Tagami, T., Yamazaki, S., Uede, T., Shimizu, J., Sakaguchi, N., Mak, T. W. et al., Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 2000. 192: 303310.
  • 50
    Peggs, K. S., Quezada, S. A., Chambers, C. A., Korman, A. J. and Allison, J. P., Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J. Exp. Med. 2009. 206: 17171725.
  • 51
    Paust, S., Lu, L., McCarty, N. and Cantor, H., Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease. Proc. Natl. Acad. Sci. U.S.A. 2004. 101: 1039810403.
  • 52
    Paust, S. and Cantor, H., Regulatory T cells and autoimmune disease. Immunol. Rev. 2005. 204: 195207.
  • 53
    Tang, Q., Adams, J. Y., Tooley, A. J., Bi, M., Fife, B. T., Serra, P., Santamaria, P. et al., Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat. Immunol. 2006. 7: 8392.
  • 54
    Fallarino, F., Grohmann, U., Hwang, K. W., Orabona, C., Vacca, C., Bianchi, R., Belladonna, M. L. et al., Modulation of tryptophan catabolism by regulatory T cells. Nat. Immunol. 2003. 4: 12061212.
  • 55
    Fassbender, M., Gerlitzki, B., Ullrich, N., Lupp, C., Klein, M., Radsak, M. P., Schmitt, E. et al., Cyclic adenosine monophosphate and IL-10 coordinately contribute to nTreg cell-mediated suppression of dendritic cell activation. Cell Immunol. 2010. 265: 9196.
  • 56
    Ahlmann, M., Varga, G., Sturm, K., Lippe, R., Benedyk, K., Viemann, D., Scholzen, T. et al., The cyclic AMP response element modulator [1] suppresses CD86 expression and APC function. J. Immunol. 2009. 182: 41674174.
  • 57
    Qureshi, O. S., Zheng, Y., Nakamura, K., Attridge, K., Manzotti, C., Schmidt, E. M., Baker, J. et al., Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 2011. 332: 600603.
  • 58
    Mendoza-Naranjo, A., Bouma, G., Pereda, C., Ramirez, M., Webb, K. F., Tittarelli, A., Lopez, M. N. et al. Functional gap junctions accumulate at the immunological synapse and contribute to T cell activation. J. Immunol. 2011. 187: 31213132.
  • 59
    Bour-Jordan, H. and Bluestone, J. A., Regulating the regulators: costimulatory signals control the homeostasis and function of regulatory T cells. Immunol. Rev. 2009. 229: 4166.
  • 60
    Tai, X., Cowan, M., Feigenbaum, L. and Singer, A., CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat. Immunol. 2005. 6: 152162.
  • 61
    Malek, T. R. and Bayer, A. L., Tolerance, not immunity, crucially depends on IL-2. Nat. Rev. Immunol. 2004. 4: 665674.
  • 62
    Beyersdorf, N., Gaupp, S., Balbach, K., Schmidt, J., Toyka, K. V., Lin, C.-H., Hanke, T. et al., Selective targeting of regulatory T cells with CD28 superagonists allows effective therapy of experimental autoimmune encephalomyelitis. J. Exp. Med. 2005. 202: 445455.
  • 63
    Suntharalingam, G., Perry, M. R., Ward, S., Brett, S. J., Castello-Cortes, A., Brunner, M. D. and Panoskaltsis, N., Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Eng. J. Med. 2006. 355: 10181028.
  • 64
    Hanke, T., Lessons from TGN1412. Lancet 2006. 368: 15691570; author reply 1570.
  • 65
    Eastwood, D., Findlay, L., Poole, S., Bird, C., Wadhwa, M., Moore, M., Burns, C. et al., Monoclonal antibody TGN1412 trial failure explained by species differences in CD28 expression on CD4+ effector memory T-cells. Br. J. Pharmacol. 2010. 161: 512526.
  • 66
    Bopp, T., Dehzad, N., Reuter, S., Klein, M., Ullrich, N., Stassen, M., Schild, H. et al., Inhibition of cAMP degradation improves regulatory T cell-mediated suppression. J. Immunol. 2009. 182: 40174024.
  • 67
    Komanduri, K. V. andChamplin, R. E., Can Treg therapy prevent GVHD? Blood 2011. 117: 751752.
  • 68
    Sitkovsky, M. and Lukashev, D., Regulation of immune cells by local-tissue oxygen tension: HIF1 alpha and adenosine receptors. Nat. Rev. Immunol. 2005. 5: 712721.
  • 69
    Caldwell, C. C., Kojima, H., Lukashev, D., Armstrong, J., Farber, M., Apasov, S. G. and Sitkovsky, M. V., Differential effects of physiologically relevant hypoxic conditions on T lymphocyte development and effector functions. J. Immunol. 2001. 167: 61406149.
  • 70
    Sitkovsky, M. V., T regulatory cells: hypoxia-adenosinergic suppression and re-direction of the immune response. Trends Immunol. 2009. 30: 102108.
  • 71
    Kobie, J. J., Shah, P. R., Yang, L., Rebhahn, J. A., Fowell, D. J. and Mosmann, T. R., T regulatory and primed uncommitted CD4 T cells express CD73, which suppresses effector CD4 T cells by converting 5′-adenosine monophosphate to adenosine. J. Immunol. 2006. 177: 67806786.
  • 72
    Deaglio, S., Dwyer, K. M., Gao, W., Friedman, D., Usheva, A., Erat, A., Chen, J. F. et al., Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 2007. 204: 12571265.
  • 73
    Kuczma, M., Lee, J. R. and Kraj, P., Connexin 43 signaling enhances the generation of Foxp3+ regulatory T cells. J. Immunol. 2011. 187: 248257.