• 1
    Kaufmann, S. H., Hussey, G. and Lambert, P. H., New vaccines for tuberculosis. Lancet 2010. 375: 21102119.
  • 2
    Ottenhoff, T. H., Overcoming the global crisis: “yes, we can”, but also for TB…? Eur. J. Immunol. 2009. 39: 20142020.
  • 3
    WHO, Global tuberculosis control: surveillance, planning, financing: WHO report 2008. “WHO/HTM/TB/2008.393”. 2010.
  • 4
    Crampin, A. C., Glynn, J. R. and Fine, P. E., What has Karonga taught us? Tuberculosis studied over three decades. Int. J. Tuberc. Lung Dis. 2009. 13: 153164.
  • 5
    Fine, P. E., Variation in protection by BCG: implications of and for heterologous immunity. Lancet 1995. 346: 13391345.
  • 6
    Young, D. and Dye, C., The development and impact of tuberculosis vaccines. Cell 2006. 124: 683687.
  • 7
    Leyten, E. M., Lin, M. Y., Franken, K. L., Friggen, A. H., Prins, C., van Meijgaarden, K. E., Voskuil, M. I. et al., Human T-cell responses to 25 novel antigens encoded by genes of the dormancy regulon of Mycobacterium tuberculosis. Microbes Infect. 2006. 8: 20522060.
  • 8
    Voskuil, M. I., Schnappinger, D., Visconti, K. C., Harrell, M. I., Dolganov, G. M., Sherman, D. R. and Schoolnik, G. K., Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J. Exp. Med. 2003. 198: 705713.
  • 9
    Rustad, T. R., Harrell, M. I., Liao, R. and Sherman, D. R., The enduring hypoxic response of Mycobacterium tuberculosis. PLoS One 2008. 3: e1502.
  • 10
    Demissie, A., Leyten, E. M., Abebe, M., Wassie, L., Aseffa, A., Abate, G., Fletcher, H. et al., Recognition of stage-specific mycobacterial antigens differentiates between acute and latent infections with Mycobacterium tuberculosis. Clin. Vaccine Immunol. 2006. 13: 179186.
  • 11
    Roupie, V., Romano, M., Zhang, L., Korf, H., Lin, M. Y., Franken, K. L., Ottenhoff, T. H. et al., Immunogenicity of eight dormancy regulon-encoded proteins of Mycobacterium tuberculosis in DNA-vaccinated and tuberculosis-infected mice. Infect. Immun. 2007. 75: 941949.
  • 12
    Black, G. F., Thiel, B. A., Ota, M. O., Parida, S. K., Adegbola, R., Boom, W. H., Dockrell, H. M. et al., Immunogenicity of novel DosR regulon-encoded candidate antigens of Mycobacterium tuberculosis in three high-burden populations in Africa. Clin. Vaccine Immunol. 2009. 16: 12031212.
  • 13
    Schuck, S. D., Mueller, H., Kunitz, F., Neher, A., Hoffmann, H., Franken, K. L., Repsilber, D. et al., Identification of T-cell antigens specific for latent mycobacterium tuberculosis infection. PLoS One 2009. 4: e5590.
  • 14
    Goletti, D., Butera, O., Vanini, V., Lauria, F. N., Lange, C., Franken, K. L., Angeletti, C. et al., Response to Rv2628 latency antigen associates with cured tuberculosis and remote infection. Eur. Respir. J. 2010. 36: 135142.
  • 15
    Wilkinson, R. J., Wilkinson, K. A., De Smet, K. A., Haslov, K., Pasvol, G., Singh, M., Svarcova, I. and Ivanyi, J., Human T- and B-cell reactivity to the 16kDa alpha-crystallin protein of Mycobacterium tuberculosis. Scand. J. Immunol. 1998. 48: 403409.
  • 16
    Yuan, Y., Crane, D. D. and Barry, C. E., III, Stationary phase-associated protein expression in Mycobacterium tuberculosis: function of the mycobacterial alpha-crystallin homolog. J. Bacteriol. 1996. 178: 44844492.
  • 17
    Geluk, A., Lin, M. Y., van Meijgaarden, K. E., Leyten, E. M., Franken, K. L., Ottenhoff, T. H. and Klein, M. R., T-cell recognition of the HspX protein of Mycobacterium tuberculosis correlates with latent M. tuberculosis infection but not with M. bovis BCG vaccination. Infect. Immun. 2007. 75: 29142921.
  • 18
    Darrah, P. A., Patel, D. T., De Luca, P. M., Lindsay, R. W., Davey, D. F., Flynn, B. J., Hoff, S. T. et al., Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat. Med. 2007. 13: 843850.
  • 19
    Forbes, E. K., Sander, C., Ronan, E. O., McShane, H., Hill, A. V., Beverley, P. C. and Tchilian, E. Z., Multifunctional, high-level cytokine-producing Th1 cells in the lung, but not spleen, correlate with protection against Mycobacterium tuberculosis aerosol challenge in mice. J. Immunol. 2008. 181: 49554964.
  • 20
    Scriba, T. J., Tameris, M., Mansoor, N., Smit, E., van der Merwe, L., Isaacs, F., Keyser, A. et al., Modified vaccinia Ankara-expressing Ag85A, a novel tuberculosis vaccine, is safe in adolescents and children, and induces polyfunctional CD4+ T cells. Eur. J. Immunol. 2010. 40: 279290.
  • 21
    Hawkridge, T., Scriba, T. J., Gelderbloem, S., Smit, E., Tameris, M., Moyo, S., Lang, T. et al., Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in healthy adults in South Africa. J. Infect. Dis. 2008. 198: 544552.
  • 22
    Abel, B., Tameris, M., Mansoor, N., Gelderbloem, S., Hughes, J., Abrahams, D., Makhethe, L. et al., The novel tuberculosis vaccine, AERAS-402, induces robust and polyfunctional CD4+ and CD8+ T cells in adults. Am. J. Respir. Crit Care Med. 2010. 181: 14071417.
  • 23
    Lindenstrom, T., Agger, E. M., Korsholm, K. S., Darrah, P. A., Aagaard, C., Seder, R. A., Rosenkrands, I. and Andersen, P., Tuberculosis subunit vaccination provides long-term protective immunity characterized by multifunctional CD4 memory T cells. J. Immunol. 2009. 182: 80478055.
  • 24
    Aagaard, C., Hoang, T., Dietrich, J., Cardona, P. J., Izzo, A., Dolganov, G., Schoolnik, G. K. et al., A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat. Med. 2011. 17: 189194.
  • 25
    Caccamo, N., Guggino, G., Joosten, S. A., Gelsomino, G., Di, C. P., Titone, L., Galati, D. et al., Multifunctional CD4+T cells correlate with active Mycobacterium tuberculosis infection. Eur. J. Immunol. 2010. 40: 22112220.
  • 26
    Sutherland, J. S., Adetifa, I. M., Hill, P. C., Adegbola, R. A. and Ota, M. O., Pattern and diversity of cytokine production differentiates between Mycobacterium tuberculosis infection and disease. Eur. J. Immunol. 2009. 39: 723729.
  • 27
    Tang, S. T., van Meijgaarden, K. E., Caccamo, N., Guggino, G., Klein, M. R., van, W. P., Kazi, F. et al., Genome-based in silico identification of new Mycobacterium tuberculosis antigens activating polyfunctional CD8+ T cells in human tuberculosis. J. Immunol. 2010. 186: 10681080.
  • 28
    Caccamo, N., Guggino, G., Meraviglia, S., Gelsomino, G., Di, C. P., Titone, L., Bocchino, M. et al., Analysis of Mycobacterium tuberculosis-specific CD8 T-cells in patients with active tuberculosis and in individuals with latent infection. PLoS One 2009. 4: e5528.
  • 29
    Seder, R. A., Darrah, P. A. and Roederer, M., T-cell quality in memory and protection: implications for vaccine design. Nat. Rev. Immunol. 2008. 8: 247258.
  • 30
    Joosten, S. A., van Meijgaarden, K. E., van Weeren, P. C., Kazi, F., Geluk, A., Savage, N. D., Drijfhout, J. W. et al., Mycobacterium tuberculosis peptides presented by HLA-E molecules are targets for human CD8 T-cells with cytotoxic as well as regulatory activity. PLoS Pathog 2010. 6: e1000782.
  • 31
    Geluk, A., van Meijgaarden, K. E., Franken, K. L., Drijfhout, J. W., D'Souza, S., Necker, A., Huygen, K. and Ottenhoff, T. H., Identification of major epitopes of Mycobacterium tuberculosis AG85B that are recognized by HLA-A*0201-restricted CD8+ T cells in HLA-transgenic mice and humans. J. Immunol. 2000. 165: 64636471.
  • 32
    Caccamo, N., Milano, S., Di, S. C., Cigna, D., Ivanyi, J., Krensky, A. M., Dieli, F. and Salerno, A., Identification of epitopes of Mycobacterium tuberculosis 16-kDa protein recognized by human leukocyte antigen-A*0201 CD8(+) T lymphocytes. J. Infect. Dis. 2002. 186: 991998.
  • 33
    De Groot, A. S., McMurry, J., Marcon, L., Franco, J., Rivera, D., Kutzler, M., Weiner, D. and Martin, B., Developing an epitope-driven tuberculosis (TB) vaccine. Vaccine 2005. 23: 21212131.
  • 34
    McMurry, J. A., Kimball, S., Lee, J. H., Rivera, D., Martin, W., Weiner, D. B., Kutzler, M. et al., Epitope-driven TB vaccine development: a streamlined approach using immuno-informatics, ELISpot assays, and HLA transgenic mice. Curr. Mol. Med. 2007. 7: 351368.
  • 35
    Rammensee, H., Bachmann, J., Emmerich, N. P., Bachor, O. A. and Stevanovic, S., SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 1999. 50: 213219.
  • 36
    Middleton, D., Menchaca, L., Rood, H. and Komerofsky, R., New allele frequency database. Tissue Antigens 2003. 61: 403407.
  • 37
    Bruns, H., Meinken, C., Schauenberg, P., Harter, G., Kern, P., Modlin, R. L., Antoni, C. and Stenger, S., Anti-TNF immunotherapy reduces CD8+ T cell-mediated antimicrobial activity against Mycobacterium tuberculosis in humans. J. Clin. Invest. 2009. 119: 11671177.
  • 38
    Flynn, J. L., Goldstein, M. M., Triebold, K. J., Koller, B. and Bloom, B. R., Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc. Natl. Acad. Sci. USA 1992. 89: 1201312017.
  • 39
    Kagina, B. M., Abel, B., Scriba, T. J., Hughes, E. J., Keyser, A., Soares, A., Gamieldien, H. et al., Specific T cell frequency and cytokine expression profile do not correlate with protection against tuberculosis after bacillus Calmette-Guerin vaccination of newborns. Am. J. Respir. Crit Care Med. 2010. 182: 10731079.
  • 40
    Ottenhoff, T. H. and de Vries, R. R., HLA class II immune response and suppression genes in leprosy. Int. J. Lepr. Other Mycobact. Dis. 1987. 55: 521534.
  • 41
    Lin, M. Y., Reddy, T. B., Arend, S. M., Friggen, A. H., Franken, K. L., van Meijgaarden, K. E., Verduyn, M. J. et al., Cross-reactive immunity to Mycobacterium tuberculosis DosR regulon-encoded antigens in individuals infected with environmental, nontuberculous mycobacteria. Infect. Immun. 2009. 77: 50715079.
  • 42
    Falk, K., Rotzschke, O., Stevanovic, S., Jung, G. and Rammensee, H. G., Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. 1991. J. Immunol. 2006. 177: 27412747.
  • 43
    Rammensee, H. G., Friede, T. and Stevanoviic, S., MHC ligands and peptide motifs: first listing. Immunogenetics 1995. 41: 178228.
  • 44
    Molloy, A., Laochumroonvorapong, P. and Kaplan, G., Apoptosis, but not necrosis, of infected monocytes is coupled with killing of intracellular bacillus Calmette-Guerin. J. Exp. Med. 1994. 180: 14991509.
  • 45
    Fratazzi, C., Arbeit, R. D., Carini, C., Balcewicz-Sablinska, M. K., Keane, J., Kornfeld, H. and Remold, H. G., Macrophage apoptosis in mycobacterial infections. J. Leukoc. Biol. 1999. 66: 763764.
  • 46
    Grotzke, J. E. and Lewinsohn, D. M., Role of CD8+ T lymphocytes in control of Mycobacterium tuberculosis infection. Microbes Infect. 2005. 7: 776788.
  • 47
    Stegelmann, F., Bastian, M., Swoboda, K., Bhat, R., Kiessler, V., Krensky, A. M., Roellinghoff, M. et al., Coordinate expression of CC chemokine ligand 5, granulysin, and perforin in CD8+ T cells provides a host defense mechanism against Mycobacterium tuberculosis. J. Immunol. 2005. 175: 74747483.
  • 48
    Wu, Y., Woodworth, J. S., Shin, D. S., Morris, S. and Behar, S. M., Vaccine-elicited 10-kilodalton culture filtrate protein-specific CD8+ T cells are sufficient to mediate protection against Mycobacterium tuberculosis infection. Infect. Immun. 2008. 76: 22492255.
  • 49
    Brode, S. and Macary, P. A., Cross-presentation: dendritic cells and macrophages bite off more than they can chew! Immunology 2004. 112: 345351.
  • 50
    Vyas, J. M., Van der Veen, A. G. and Ploegh, H. L., The known unknowns of antigen processing and presentation. Nat. Rev. Immunol. 2008. 8: 607618.
  • 51
    Melief, C. J. and van der Burg, S. H., Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat. Rev. Cancer 2008. 8: 351360.
  • 52
    Moudgil, K. D. and Sercarz, E. E., Dominant determinants in hen eggwhite lysozyme correspond to the cryptic determinants within its self-homologue, mouse lysozyme: implications in shaping of the T cell repertoire and autoimmunity. J. Exp. Med. 1993. 178: 21312138.
  • 53
    Aagaard, C. S., Hoang, T. T., Vingsbo-Lundberg, C., Dietrich, J., and Andersen, P., Quality and vaccine efficacy of CD4+ T cell responses directed to dominant and subdominant epitopes in ESAT-6 from Mycobacterium tuberculosis. J. Immunol. 2009. 183: 26592668.
  • 54
    Arend, S. M., Geluk, A., van Meijgaarden, K. E., van Dissel, J. T., Theisen, M., Andersen, P. and Ottenhoff, T. H., Antigenic equivalence of human T-cell responses to Mycobacterium tuberculosis-specific RD1-encoded protein antigens ESAT-6 and culture filtrate protein 10 and to mixtures of synthetic peptides. Infect. Immun. 2000. 68: 33143321.
  • 55
    Lin, M. Y., Geluk, A., Smith, S. G., Stewart, A. L., Friggen, A. H., Franken, K. L., Verduyn, M. J. et al., Lack of immune responses to Mycobacterium tuberculosis DosR regulon proteins following Mycobacterium bovis BCG vaccination. Infect. Immun. 2007. 75: 35233530.
  • 56
    Franken, K. L., Hiemstra, H. S., van Meijgaarden, K. E., Subronto, Y., den, H. J., Ottenhoff, T. H. and Drijfhout, J. W., Purification of his-tagged proteins by immobilized chelate affinity chromatography: the benefits from the use of organic solvent. Protein Expr. Purif. 2000. 18: 9599.
  • 57
    Hiemstra, H. S., Duinkerken, G., Benckhuijsen, W. E., Amons, R., de Vries, R. R., Roep, B. O. and Drijfhout, J. W., The identification of CD4+ T cell epitopes with dedicated synthetic peptide libraries. Proc. Natl. Acad. Sci. USA 1997. 94: 1031310318.
  • 58
    van der Burg, S. H., Klein, M. R., van de Velde, C. J., Kast, W. M., Miedema, F. and Melief, C. J., Induction of a primary human cytotoxic T-lymphocyte response against a novel conserved epitope in a functional sequence of HIV-1 reverse transcriptase. AIDS 1995. 9: 121127.
  • 59
    Commandeur, S., van Meijgaarden, K. E., Lin, M. Y., Franken, K. L., Friggen, A. H., Drijfhout, J. W., Oftung, F. et al., Identification of human T-cell responses to Mycobacterium tuberculosis resuscitation-promoting factors in long-term latently infected individuals. Clin. Vaccine Immunol. 2011. 18: 676683.