• 1
    Bahram, S., Bresnahan, M., Geraghty, D. E. and Spies, T., A second lineage of mammalian major histocompatibility complex class I genes. Proc. Natl. Acad. Sci. USA 1994. 91: 62596263.
  • 2
    Gonzalez, S., Groh, V. and Spies, T., Immunobiology of human NKG2D and its ligands. Curr. Top. Microbiol. Immunol. 2006. 298: 121138.
  • 3
    Bauer, S., Groh, V., Wu, J., Steinle, A., Phillips, J. H., Lanier, L. L. and Spies, T., Activation of NK cells and T cells by NKG2D, a receptor for stress- inducible MICA. Science 1999. 285: 727729.
  • 4
    Groh, V., Wu, J., Yee, C. and Spies, T., Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 2002. 419: 734738.
  • 5
    Wu, J. D., Higgins, L. M., Steinle, A., Cosman, D., Haugk, K. and Plymate, S. R., Prevalent expression of the immunostimulatory MHC class I chain-related molecule is counteracted by shedding in prostate cancer. J. Clin. Invest. 2004. 114: 560568.
  • 6
    Paschen, A., Sucker, A., Hill, B., Moll, I., Zapatka, M., Nguyen, X. D., Sim, G. C. et al., Differential clinical significance of individual NKG2D ligands in melanoma: soluble ULBP2 as an indicator of poor prognosis superior to S100B. Clin. Cancer Res. 2009. 15: 52085215.
  • 7
    Nuckel, H., Switala, M., Sellmann, L., Horn, P. A., Durig, J., Duhrsen, U., Kuppers, R. et al., The prognostic significance of soluble NKG2D ligands in B-cell chronic lymphocytic leukemia. Leukemia 2010. 24: 11521159.
  • 8
    Salih, H. R., Holdenrieder, S. and Steinle, A., Soluble NKG2D ligands: prevalence, release, and functional impact. Front. Biosci. 2008. 13: 34483456.
  • 9
    Salih, H. R., Rammensee, H. G. and Steinle, A., Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding. J. Immunol. 2002. 169: 40984102.
  • 10
    Salih, H. R., Goehlsdorf, D. and Steinle, A., Release of MICB molecules by tumor cells: mechanism and soluble MICB in sera of cancer patients. Hum. Immunol. 2006. 67: 188195.
  • 11
    Waldhauer, I., Goehlsdorf, D., Gieseke, F., Weinschenk, T., Wittenbrink, M., Ludwig, A., Stevanovic, S. et al., Tumor-associated MICA is shed by ADAM proteases. Cancer Res. 2008. 68: 63686376.
  • 12
    Boutet, P., Aguera-Gonzalez, S., Atkinson, S., Pennington, C. J., Edwards, D. R., Murphy, G., Reyburn, H. T. and Vales-Gomez, M., Cutting edge: the metalloproteinase ADAM17/TNF-alpha-converting enzyme regulates proteolytic shedding of the MHC class I-related chain B protein. J. Immunol. 2009. 182: 4953.
  • 13
    Kohga, K., Takehara, T., Tatsumi, T., Ishida, H., Miyagi, T., Hosui, A. and Hayashi, N., Sorafenib inhibits the shedding of major histocompatibility complex class I-related chain A on hepatocellular carcinoma cells by down-regulating a disintegrin and metalloproteinase 9. Hepatology 2010. 51: 12641273.
  • 14
    Liu, G., Atteridge, C. L., Wang, X., Lundgren, A. D. and Wu, J. D., The membrane type matrix metalloproteinase MMP14 mediates constitutive shedding of MHC class I chain-related molecule A independent of A disintegrin and metalloproteinases. J. Immunol. 2010. 184: 33463350.
  • 15
    Kaiser, B. K., Yim, D., Chow, I. T., Gonzalez, S., Dai, Z., Mann, H. H., Strong, R. K. et al., Disulphide-isomerase-enabled shedding of tumour-associated NKG2D ligands. Nature 2007. 447: 482486.
  • 16
    Webb, Y., Hermida-Matsumoto, L. and Resh, M. D., Inhibition of protein palmitoylation, raft localization, and T cell signaling by 2-bromopalmitate and polyunsaturated fatty acids. J. Biol. Chem. 2000. 275: 261270.
  • 17
    Resh, M. D., Palmitoylation of ligands, receptors, and intracellular signaling molecules. Sci. STKE 2006. 359: re14.
  • 18
    Melkonian, K. A., Ostermeyer, A. G., Chen, J. Z., Roth, M. G. and Brown, D. A., Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated. J. Biol. Chem. 1999. 274: 39103917.
  • 19
    Hang, H. C., Geutjes, E. J., Grotenbreg, G., Pollington, A. M., Bijlmakers, M. J. and Ploegh, H. L., Chemical probes for the rapid detection of Fatty-acylated proteins in Mammalian cells. J. Am. Chem. Soc. 2007. 129: 27442745.
  • 20
    Charron, G., Zhang, M. M., Yount, J. S., Wilson, J., Raghavan, A. S., Shamir, E. and Hang, H. C., Robust fluorescent detection of protein fatty-acylation with chemical reporters. J. Am. Chem. Soc. 2009. 131: 49674975.
  • 21
    Eleme, K., Taner, S. B., Onfelt, B., Collinson, L. M., McCann, F. E., Chalupny, N. J., Cosman, D. et al., Cell surface organization of stress-inducible proteins ULBP and MICA that stimulate human NK cells and T cells via NKG2D. J. Exp. Med. 2004. 199: 10051010.
  • 22
    Charollais, J. and Van Der Goot, F. G., Palmitoylation of membrane proteins (Review). Mol. Membr. Biol. 2009. 26: 5566.
  • 23
    Rodgers, W., Crise, B. and Rose, J. K., Signals determining protein tyrosine kinase and glycosyl-phosphatidylinositol-anchored protein targeting to a glycolipid-enriched membrane fraction. Mol. Cell. Biol. 1994. 14: 53845391.
  • 24
    Hommelgaard, A. M., Roepstorff, K., Vilhardt, F., Torgersen, M. L., Sandvig, K. and van Deurs, B., Caveolae: stable membrane domains with a potential for internalization. Traffic 2005. 6: 720724.
  • 25
    Fauriat, C., Long, E. O., Ljunggren, H. G. and Bryceson, Y. T., Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood 2010. 115: 21672176.
  • 26
    Holdenrieder, S., Eichhorn, P., Beuers, U., Samtleben, W., Stieber, P., Nagel, D., Peterfi, A. et al., Soluble NKG2D ligands in hepatic autoimmune diseases and in benign diseases involved in marker metabolism. Anticancer Res. 2007. 27: 20412045.
  • 27
    Wu, J. D., Atteridge, C. L., Wang, X., Seya, T. and Plymate, S. R., Obstructing shedding of the immunostimulatory MHC class I chain-related gene B prevents tumor formation. Clin. Cancer Res. 2009. 15: 632640.
  • 28
    Baekkeskov, S. and Kanaani, J., Palmitoylation cycles and regulation of protein function (Review). Mol. Membr. Biol. 2009. 26: 4254.
  • 29
    Tsutsumi, R., Fukata, Y. and Fukata, M., Discovery of protein-palmitoylating enzymes. Pflugers Arch. 2008. 456: 11991206.
  • 30
    Abrami, L., Leppla, S. H. and van der Goot, F. G., Receptor palmitoylation and ubiquitination regulate anthrax toxin endocytosis. J. Cell Biol. 2006. 172: 309320.
  • 31
    Thomas, M., Boname, J. M., Field, S., Nejentsev, S., Salio, M., Cerundolo, V., Wills, M. and Lehner, P. J., Down-regulation of NKG2D and NKp80 ligands by Kaposi's sarcoma-associated herpesvirus K5 protects against NK cell cytotoxicity. Proc. Natl. Acad. Sci. USA 2008. 105: 16561661.
  • 32
    Gruenberg, J. and Stenmark, H., The biogenesis of multivesicular endosomes. Nat. Rev. Mol. Cell Biol. 2004. 5: 317323.
  • 33
    Doherty, G. J. and McMahon, H. T., Mechanisms of endocytosis. Annu. Rev. Biochem. 2009. 78: 857902.
  • 34
    Annabi, B., Lachambre, M., Bousquet-Gagnon, N., Page, M., Gingras, D. and Beliveau, R., Localization of membrane-type 1 matrix metalloproteinase in caveolae membrane domains. Biochem. J. 2001. 353: 547553.
  • 35
    Galvez, B. G., Matias-Roman, S., Yanez-Mo, M., Vicente-Manzanares, M., Sanchez-Madrid, F. and Arroyo, A. G., Caveolae are a novel pathway for membrane-type 1 matrix metalloproteinase traffic in human endothelial cells. Mol. Biol. Cell 2004. 15: 678687.
  • 36
    Endt, J., McCann, F. E., Almeida, C. R., Urlaub, D., Leung, R., Pende, D., Davis, D. M. and Watzl, C., Inhibitory receptor signals suppress ligation-induced recruitment of NKG2D to GM1-rich membrane domains at the human NK cell immune synapse. J. Immunol. 2007. 178: 56065611.
  • 37
    Fernandez-Messina, L., Ashiru, O., Aguera-Gonzalez, S., Reyburn, H. T. and Vales-Gomez, M., The human NKG2D ligand ULBP2 can be expressed at the cell surface with or without a GPI anchor and both forms can activate NK cells. J. Cell Sci. 2011. 124: 321327.
  • 38
    Martinez, E., Brzostowski, J. A., Long, E. O. and Gross, C. C., Cutting edge: NKG2D-dependent cytotoxicity is controlled by ligand distribution in the target cell membrane. J. Immunol. 2011. 186: 55385542.
  • 39
    Vales-Gomez, M., Browne, H. and Reyburn, H. T., Expression of the UL16 glycoprotein of Human Cytomegalovirus protects the virus-infected cell from attack by natural killer cells. Biomed. Chromatogr. Immunol. 2003. 4: 4.
  • 40
    de la Luna, S. and Ortin, J., pac gene as efficient dominant marker and reporter gene in mammalian cells. Methods Enzymol. 1992. 216: 376385.
  • 41
    Raghavan, A., Charron, G., Flexner, J. and Hang, H. C., Chemical probes for profiling fatty acid-associated proteins in living cells. Bioorg. Med. Chem. Lett. 2008. 18: 59825986.
  • 42
    Peterson, M. E. and Long, E. O., Inhibitory receptor signaling via tyrosine phosphorylation of the adaptor Crk. Immunity 2008. 29: 578588.