• 1
    Leiter, E. H., Prochazka, M. and Coleman, D. L., The non-obese diabetic (NOD) mouse. Am. J. Pathol. 1987. 128: 380383.
  • 2
    Jansen, A., Homo-Delarche, F., Hooijkaas, H., Leenen, P. J., Dardenne, M. and Drexhage, H. A., Immunohistochemical characterization of monocytes-macrophages and dendritic cells involved in the initiation of the insulitis and beta-cell destruction in NOD mice. Diabetes 1994. 43: 667675.
  • 3
    Rosmalen, J. G., Homo-Delarche, F., Durant, S., Kap, M., Leenen, P. J. and Drexhage, H. A., Islet abnormalities associated with an early influx of dendritic cells and macrophages in NOD and NODscid mice. Lab. Invest. 2000. 80: 769777.
  • 4
    Shortman, K. and Liu, Y. J., Mouse and human dendritic cell subtypes. Nat. Rev. Immunol. 2002. 2: 151161.
  • 5
    Saxena, V., Ondr, J. K., Magnusen, A. F., Munn, D. H. and Katz, J. D., The countervailing actions of myeloid and plasmacytoid dendritic cells control autoimmune diabetes in the nonobese diabetic mouse. J. Immunol. 2007. 179: 50415053.
  • 6
    Sunderkotter, C., Nikolic, T., Dillon, M. J., Van Rooijen, N., Stehling, M., Drevets, D. A. and Leenen, P. J., Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J. Immunol. 2004. 172: 44104417.
  • 7
    Auffray, C., Fogg, D., Garfa, M., Elain, G., Join-Lambert, O., Kayal, S., Sarnacki, S. et al., Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 2007. 317: 666670.
  • 8
    Varol, C., Landsman, L., Fogg, D. K., Greenshtein, L., Gildor, B., Margalit, R., Kalchenko, V. et al., Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J. Exp. Med. 2007. 204: 171180.
  • 9
    Merad, M. M. M., Karsunky, H., Wagers, A., Peters, W., Charo, I., Weissman, I. L., Cyster, J. G., Engleman, E. G., Langerhans cells renew in the skin throughout life under steady-state conditions. Nat. Immunol. 2002. 3: 11351141.
  • 10
    Chang-Rodriguez, S., Hoetzenecker, W., Schwarzler, C., Biedermann, T., Saeland, S. and Elbe-Burger, A., Fetal and neonatal murine skin harbors Langerhans cell precursors. J. Leukoc. Biol. 2005. 77: 352360.
  • 11
    Walker, W. S., Separate precursor cells for macrophages and microglia in mouse brain: immunophenotypic and immunoregulatory properties of the progeny. J. Neuroimmunol. 1999. 94: 127133.
  • 12
    Geutskens, S. B., Otonkoski, T., Pulkkinen, M. A., Drexhage, H. A. and Leenen, P. J., Macrophages in the murine pancreas and their involvement in fetal endocrine development in vitro. J. Leukoc. Biol. 2005. 78: 845852.
  • 13
    Bouma, G., Nikolic, T., Coppens, J. M., van Helden-Meeuwsen, C. G., Leenen, P. J., Drexhage, H. A., Sozzani, al., NOD mice have a severely impaired ability to recruit leukocytes into sites of inflammation. Eur. J. Immunol. 2005. 35: 225235.
  • 14
    Nikolic, T., Geutskens, S. B., van Rooijen, N., Drexhage, H. A. and Leenen, P. J., Dendritic cells and macrophages are essential for the retention of lymphocytes in (peri)-insulitis of the nonobese diabetic mouse: a phagocyte depletion study. Lab. Invest. 2005. 85: 487501.
  • 15
    de Bruijn, M. F., Ploemacher, R. E., Mayen, A. E., Voerman, J. S., Slieker, W. A., van Ewijk, W. and Leenen, P. J., High-level expression of the ER-MP58 antigen on mouse bone marrow hematopoietic progenitor cells marks commitment to the myeloid lineage. Eur. J. Immunol. 1996. 26: 28502858.
  • 16
    Philbrick, W. M., Maher, S. E., Bridgett, M. M. and Bothwell, A. L., A recombination event in the 5′ flanking region of the Ly-6C gene correlates with impaired expression in the NOD, NZB and ST strains of mice. EMBO J. 1990. 9: 24852492.
  • 17
    Geutskens, S. B., Homo-Delarche, F., Pleau, J. M., Durant, S., Drexhage, H. A. and Savino, W., Extracellular matrix distribution and islet morphology in the early postnatal pancreas: anomalies in the non-obese diabetic mouse. Cell Tissue Res. 2004. 318: 579589.
  • 18
    Charre, S., Rosmalen, J. G., Pelegri, C., Alves, V., Leenen, P. J., Drexhage, H. A. and Homo-Delarche, F., Abnormalities in dendritic cell and macrophage accumulation in the pancreas of nonobese diabetic (NOD) mice during the early neonatal period. Histol. Histopathol. 2002. 17: 393401.
  • 19
    Barreda, D. R., Hanington, P. C. and Belosevic, M., Regulation of myeloid development and function by colony stimulating factors. Dev. Comp. Immunol. 2004. 28: 509554.
  • 20
    Lee, M., Kim, A. Y. and Kang, Y., Defects in the differentiation and function of bone marrow-derived dendritic cells in non-obese diabetic mice. J. Korean Med. Sci. 2000. 15: 217223.
  • 21
    Strid, J., Lopes, L., Marcinkiewicz, J., Petrovska, L., Nowak, B., Chain, B. M. and Lund, T., A defect in bone marrow derived dendritic cell maturation in the nonobesediabetic mouse. Clin. Exp. Immunol. 2001. 123: 375381.
  • 22
    Rumore-Maton, B., Elf, J., Belkin, N., Stutevoss, B., Seydel, F., Garrigan, E. and Litherland, S. A., M-CSF and GM-CSF regulation of STAT5 activation and DNA binding in myeloid cell differentiation is disrupted in nonobese diabetic mice. Clin. Dev. Immunol. 2008. 2008: 769795.
  • 23
    Palframan, R. T., Jung, S., Cheng, G., Weninger, W., Luo, Y., Dorf, M., Littman, D. R. et al., Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J. Exp. Med. 2001. 194: 13611373.
  • 24
    Geissmann, F., Jung, S. and Littman, D. R., Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003. 19: 7182.
  • 25
    Karlmark, K. R., Weiskirchen, R., Zimmermann, H. W., Gassler, N., Ginhoux, F., Weber, C., Merad, M. et al., Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology 2009. 50: 261274.
  • 26
    Fogg, D. K., Sibon, C., Miled, C., Jung, S., Aucouturier, P., Littman, D. R., Cumano, A. et al., A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 2006. 311: 8387.
  • 27
    Naik, S. H., Sathe, P., Park, H. Y., Metcalf, D., Proietto, A. I., Dakic, A., Carotta, S. et al., Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat. Immunol. 2007. 8: 12171226.
  • 28
    Onai, N., Obata-Onai, A., Schmid, M. A., Ohteki, T., Jarrossay, D. and Manz, M. G., Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat. Immunol. 2007. 8: 12071216.
  • 29
    Nikolic, T., Bunk, M., Drexhage, H. A. and Leenen, P. J., Bone marrow precursors of nonobese diabetic mice develop into defective macrophage-like dendritic cells in vitro. J. Immunol. 2004. 173: 43424351.
  • 30
    Sommandas, V., Rutledge, E. A., Van Yserloo, B., Fuller, J., Lernmark, A. and Drexhage, H. A., Aberrancies in the differentiation and maturation of dendritic cells from bone-marrow precursors are linked to various genes on chromosome 4 and other chromosomes of the BB-DP rat. J. Autoimmun. 2005. 25: 112.
  • 31
    Marleau, A. M. and Singh, B., Myeloid dendritic cells in non-obese diabetic mice have elevated costimulatory and T helper-1-inducing abilities. J. Autoimmun. 2002. 19: 2335.
  • 32
    Poligone, B., WeaverJr., D. J., Sen, P., Baldwin, A. S. Jr., and Tisch, R., Elevated NF-kappaB activation in nonobese diabetic mouse dendritic cells results in enhanced APC function. J. Immunol. 2002. 168: 188196.
  • 33
    Sen, P., Bhattacharyya, S., Wallet, M., Wong, C. P., Poligone, B., Sen, M., BaldwinJr., A. S. et al., NF-kappa B hyperactivation has differential effects on the APC function of nonobese diabetic mouse macrophages. J. Immunol. 2003. 170: 17701780.
  • 34
    Sommandas, V., Rutledge, E. A., Van Yserloo, B., Fuller, J., Lernmark, A. and Drexhage, H. A., Defects in differentiation of bone-marrow derived dendritic cells of the BB rat are partly associated with IDDM2 (the lyp gene) and partly associated with other genes in the BB rat background. J. Autoimmun. 2005. 25: 4656.
  • 35
    Lund, T. and Strid, J., Is lack of peripheral tolerance induction a cause for diabetes in the non-obese diabetic mouse? Arch. Immunol. Ther. Exp. (Warsz) 2000. 48: 405416.
  • 36
    Delemarre, F. G., Simons, P. J., de Heer, H. J. and Drexhage, H. A., Signs of immaturity of splenic dendritic cells from the autoimmune prone biobreeding rat: consequences for the in vitro expansion of regulator and effector T cells. J. Immunol. 1999. 162: 17951801.
  • 37
    Feili-Hariri, M., Falkner, D. H. and Morel, P. A., Regulatory Th2 response induced following adoptive transfer of dendritic cells in prediabetic NOD mice. Eur. J. Immunol. 2002. 32: 20212030.
  • 38
    Adorini, L., Tolerogenic dendritic cells induced by vitamin D receptor ligands enhance regulatory T cells inhibiting autoimmune diabetes. Ann. NY Acad. Sci. 2003. 987: 258261.
  • 39
    Lutz, M. B., Kukutsch, N., Ogilvie, A. L., Rossner, S., Koch, F., Romani, N. and Schuler, G., An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Methods 1999. 223: 7792.
  • 40
    Daro, E., Pulendran, B., Brasel, K., Teepe, M., Pettit, D., Lynch, D. H., Vremec, D. et al., Polyethylene glycol-modified GM-CSF expands CD11b(high)CD11c(high) but notCD11b(low)CD11c(high) murine dendritic cells in vivo: a comparative analysis with Flt3 ligand. J. Immunol. 2000. 165: 4958.