• 1
    van der Burg, S. H., Visseren, M. J., Brandt, R. M., Kast, W. M. and Melief, C. J., Immunogenicity of peptides bound to MHC class I molecules depends on the MHC-peptide complex stability. J. Immunol. 1996. 156: 33083314.
  • 2
    Lazarski, C. A., Chaves, F. A., Jenks, S. A., Wu, S., Richards, K. A., Weaver, J. M. and Sant, A. J., The kinetic stability of MHC class II: peptide complexes is a key parameter that dictates immunodominance. Immunity 2005. 23: 2940.
  • 3
    Sant, A. J., Chaves, F. A., Jenks, S. A., Richards, K. A., Menges, P., Weaver, J. M. and Lazarski, C. A., The relationship between immunodominance, DM editing, and the kinetic stability of MHC class II: peptide complexes. Immunol. Rev. 2005. 207: 261278.
  • 4
    Busch, D. H. and Pamer, E. G., MHC class I/peptide stability: implications for immunodominance, in vitro proliferation, and diversity of responding CTL. J. Immunol. 1998. 160: 44414448.
  • 5
    Mullbacher, A., Lobigs, M., Yewdell, J. W., Bennink, J. R., Tha Hla, R. and Blanden, R. V., High peptide affinity for MHC class I does not correlate with immunodominance. Scand. J. Immunol. 1999. 50: 420426.
  • 6
    Assarsson, E., Sidney, J., Oseroff, C., Pasquetto, V., Bui, H. H., Frahm, N., Brander, C. et al., A quantitative analysis of the variables affecting the repertoire of T-cell specificities recognized after vaccinia virus infection. J. Immunol. 2007. 178: 78907901.
  • 7
    Buus, S., Sette, A., Colon, S. M., Miles, C. and Grey, H. M., The relation between major histocompatibility complex (MHC) restriction and the capacity of Ia to bind immunogenic peptides. Science 1987. 235: 13531358.
  • 8
    Dedier, S., Reinelt, S., Rion, S., Folkers, G. and Rognan, D., Use of fluorescence polarization to monitor MHC-peptide interactions in solution. J. Immunol. Methods 2001. 255: 5766.
  • 9
    Binz, A. K., Rodriguez, R. C., Biddison, W. E. and Baker, B. M., Thermodynamic and kinetic analysis of a peptide-class I MHC interaction highlights the noncovalent nature and conformational dynamics of the class I heterotrimer. Biochemistry 2003. 42: 49544961.
  • 10
    Buchli, R., VanGundy, R. S., Hickman-Miller, H. D., Giberson, C. F., Bardet, W. and Hildebrand, W. H., Real-time measurement of in vitro peptide binding to soluble HLA-A*0201 by fluorescence polarization. Biochemistry 2004. 43: 1485214863.
  • 11
    Khilko, S. N., Corr, M., Boyd, L. F., Lees, A., Inman, J. K. and Margulies, D. H., Direct detection of major histocompatibility complex class I binding to antigenic peptides using surface plasmon resonance. Peptide immobilization and characterization of binding specificity. J. Biol. Chem. 1993. 268: 1542515434.
  • 12
    Khilko, S. N., Jelonek, M. T., Corr, M., Boyd, L. F., Bothwell, A. L. and Margulies, D. H., Measuring interactions of MHC class I molecules using surface plasmon resonance. J. Immunol. Methods 1995. 183: 7794.
  • 13
    Parker, K. C., DiBrino, M., Hull, L. and Coligan, J. E., The beta 2-microglobulin dissociation rate is an accurate measure of the stability of MHC class I heterotrimers and depends on which peptide is bound. J. Immunol. 1992. 149: 18961904.
  • 14
    Harndahl, M., Rasmussen, M., Roder, G. and Buus, S., Real-time, high-throughput measurements of peptide-MHC-I dissociation using a scintillation proximity assay. J. Immunol. Methods 2011. 374: 512.
  • 15
    Harndahl, M., Justesen, S., Lamberth, K., Roder, G., Nielsen, M. and Buus, S., Peptide binding to HLA class I molecules: homogenous, high-throughput screening, and affinity assays. J. Biomol. Screen 2009. 14: 173180.
  • 16
    Olsen, A. C., Pedersen, L. O., Hansen, A. S., Nissen, M. H., Olsen, M., Hansen, P. R., Holm, A. et al., A quantitative assay to measure the interaction between immunogenic peptides and purified class I major histocompatibility complex molecules. Eur. J. Immunol 1994. 24: 385392.
  • 17
    Sylvester-Hvid, C., Nielsen, M., Lamberth, K., Roder, G., Justesen, S., Lundegaard, C., Worning, P. et al., SARSCTL vaccine candidates; HLA supertype-, genome-wide scanning and biochemical validation. Tissue Antigens 2004. 63: 395400.
  • 18
    Wang, M., Lamberth, K., Harndahl, M., Roder, G., Stryhn, A., Larsen, M. V., Nielsen, M. et al., CTL epitopes for influenza A including the H5N1 bird flu; genome-, pathogen-, and HLA-wide screening. Vaccine 2007. 25: 28232831.
  • 19
    Buus, S., Lauemoller, S. L., Worning, P., Kesmir, C., Frimurer, T., Corbet, S., Fomsgaard, A. et al., Sensitive quantitative predictions of peptide-MHC binding by a “Query by Committee” artificial neural network approach. Tissue Antigens 2003. 62: 378384.
  • 20
    Christensen, J. K., Lamberth, K., Nielsen, M., Lundegaard, C., Worning, P., Lauemoller, S. L., Buus, S. et al., Selecting informative data for developing peptide-MHC binding predictors using a query by committee approach. Neural. Comput. 2003. 15: 29312942.
  • 21
    Schumacher, T. N., De Bruijn, M. L., Vernie, L. N., Kast, W. M., Melief, C. J., Neefjes, J. J. and Ploegh, H. L., Peptide selection by MHC class I molecules. Nature 1991. 350: 703706.
  • 22
    Yewdell, J. W. and Bennink, J. R., Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu. Rev. Immunol. 1999. 17: 5188.
  • 23
    Yewdell, J. W., Confronting complexity: real-world immunodominance in antiviral CD8+ T-cell responses. Immunity 2006. 25: 533543.
  • 24
    Yewdell, J. W. and Bennink, J. R., Cut and trim: generating MHC class I peptide ligands. Curr. Opin. Immunol. 2001. 13: 1318.
  • 25
    Sette, A., Vitiello, A., Reherman, B., Fowler, P., Nayersina, R., Kast, W. M., Melief, C. J. et al., The relationship between class I binding affinity and immunogenicity of potential cytotoxic T-cell epitopes. J. Immunol. 1994. 153: 55865592.
  • 26
    Wang, M., Larsen, M. V., Nielsen, M., Harndahl, M., Justesen, S., Dziegiel, M. H., Buus, S. et al., HLA class I binding 9mer peptides from influenza A virus induce CD4 T-cell responses. PLoS One 2010. 5: e10533.
  • 27
    Micheletti, F., Guerrini, R., Formentin, A., Canella, A., Marastoni, M., Bazzaro, M., Tomatis, R. et al., Selective amino acid substitutions of a subdominant Epstein-Barr virus LMP2-derived epitope increase HLA/peptide complex stability and immunogenicity: implications for immunotherapy of Epstein-Barr virus-associated malignancies. Eur. J. Immunol. 1999. 29: 25792589.
  • 28
    Burrows, J. M., Wynn, K. K., Tynan, F. E., Archbold, J., Miles, J. J., Bell, M. J., Brennan, R. M. et al., The impact of HLA-B micropolymorphism outside primary peptide anchor pockets on the CTL response to CMV. Eur. J. Immunol. 2007. 37: 946953.
  • 29
    Nicholls, S., Piper, K. P., Mohammed, F., Dafforn, T. R., Tenzer, S., Salim, M., Mahendra, P. et al., Secondary anchor polymorphism in the HA-1 minor histocompatibility antigen critically affects MHC stability and TCR recognition. Proc. Natl. Acad. Sci. USA 2009. 106: 38893894.
  • 30
    Spierings, E., Gras, S., Reiser, J. B., Mommaas, B., Almekinders, M., Kester, M. G., Chouquet, A. et al., Steric hindrance and fast dissociation explain the lack of immunogenicity of the minor histocompatibility HA-1Arg Null allele. J. Immunol. 2009. 182: 48094816.
  • 31
    Lipford, G. B., Bauer, S., Wagner, H. and Heeg, K., In vivo CTL induction with point-substituted ovalbumin peptides: immunogenicity correlates with peptide-induced MHC class I stability. Vaccine 1995. 13: 313320.
  • 32
    van Stipdonk, M. J., Badia-Martinez, D., Sluijter, M., Offringa, R., van Hall, T. and Achour, A., Design of agonistic altered peptides for the robust induction of CTL directed towards H-2Db in complex with the melanoma-associated epitope gp100. Cancer Res. 2009. 69: 77847792.
  • 33
    Hall, F. C., Rabinowitz, J. D., Busch, R., Visconti, K. C., Belmares, M., Patil, N. S., Cope, A. P. et al., Relationship between kinetic stability and immunogenicity of HLA-DR4/peptide complexes. Eur. J. Immunol. 2002. 32: 662670.
  • 34
    Pogue, R. R., Eron, J., Frelinger, J. A. and Matsui, M., Amino-terminal alteration of the HLA-A*0201-restricted human immunodeficiency virus pol peptide increases complex stability and in vitro immunogenicity. Proc. Natl. Acad. Sci. USA 1995. 92: 81668170.
  • 35
    Brooks, J. M., Colbert, R. A., Mear, J. P., Leese, A. M. and Rickinson, A. B., HLA-B27 subtype polymorphism and CTL epitope choice: studies with EBV peptides link immunogenicity with stability of the B27:peptide complex. J. Immunol. 1998. 161: 52525259.
  • 36
    Abdel-Motal, U. M., Friedline, R., Poligone, B., Pogue-Caley, R. R., Frelinger, J. A. and Tisch, R., Dendritic cell vaccination induces cross-reactive cytotoxic T lymphocytes specific for wild-type and natural variant human immunodeficiency virus type 1 epitopes in HLA-A*0201/Kb transgenic mice. Clin. Immunol. 2001. 101: 5158.
  • 37
    Vertuani, S., Sette, A., Sidney, J., Southwood, S., Fikes, J., Keogh, E., Lindencrona, J. A. et al., Improved immunogenicity of an immunodominant epitope of the HER-2/neu protooncogene by alterations of MHC contact residues. J. Immunol. 2004. 172: 35013508.
  • 38
    Grohmann, U., Belladonna, M. L., Bianchi, R., Orabona, C., Silla, S., Squillacioti, G., Fioretti, M. C. et al., Immunogenicity of tumor peptides: importance of peptide length and stability of peptide/MHC class II complex. Cancer Immunol. Immunother. 1999. 48: 195203.
  • 39
    Pedrazzini, T., Sette, A., Albertson, M. and Grey, H. M., Free ligand-induced dissociation of MHC-antigen complexes. J. Immunol. 1991. 146: 34963501.
  • 40
    Leisner, C., Loeth, N., Lamberth, K., Justesen, S., Sylvester-Hvid, C., Schmidt, E. G., Claesson, M. et al., One-pot, mix-and-read peptide-MHC tetramers. PLoS One 2008. 3: e1678.
  • 41
    Ostergaard Pedersen, L., Nissen, M. H., Hansen, N. J., Nielsen, L. L., Lauenmoller, S. L., Blicher, T., Nansen, A. et al., Efficient assembly of recombinant major histocompatibility complex class I molecules with preformed disulfide bonds. Eur. J. Immunol. 2001. 31: 29862996.
  • 42
    Ferre, H., Ruffet, E., Blicher, T., Sylvester-Hvid, C., Nielsen, L. L., Hobley, T. J., Thomas, O. R. et al., Purification of correctly oxidized MHC class I heavy-chain molecules under denaturing conditions: a novel strategy exploiting disulfide assisted protein folding. Protein Sci. 2003. 12: 551559.
  • 43
    Hunter, W. M. and Greenwood, F. C., Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature 1962. 194: 495496.
  • 44
    Wei, J., Li, J., Zhang, X., Tang, Y., Wang, J. and Wu, Y., A naturally processed epitope on rotavirus VP7 glycoprotein recognized by HLA-A2.1-restricted cytotoxic CD8+ T cells. Viral Immunol. 2009. 22: 189194.
  • 45
    Nielsen, M., Lundegaard, C., Worning, P., Lauemoller, S. L., Lamberth, K., Buus, S., Brunak, S. et al., Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 2003. 12: 10071017.
  • 46
    Lundegaard, C., Lamberth, K., Harndahl, M., Buus, S., Lund, O. and Nielsen, M., NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11. Nucleic Acids Res. 2008. 36: W509512.
  • 47
    Nielsen, M., Lundegaard, C., Blicher, T., Lamberth, K., Harndahl, M., Justesen, S., Roder, G. et al., NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. PLoS One 2007. 2: e796.