• 1
    Umetsu, D. T., McIntire, J. J., Akbari, O., Macaubas, C. and DeKruyff, R. H., Asthma: an epidemic of dysregulated immunity. Nat. Immunol. 2002. 3: 715720.
  • 2
    Elias, J. A., Lee, C. G., Zheng, T., Ma, B., Homer, R. J. and Zhu, Z., New insights into the pathogenesis of asthma. J. Clin. Invest. 2003. 111: 291297.
  • 3
    Holgate, S. T. and Polosa, R., The mechanisms, diagnosis, and management of severe asthma in adults. Lancet 2006. 368: 780793.
  • 4
    Maneechotesuwan, K., Essilfie-Quaye, S., Kharitonov, S. A., Adcock, I. M. and Barnes, P. J., Loss of control of asthma following inhaled corticosteroid withdrawal is associated with increased sputum interleukin-8 and neutrophils. Chest 2007. 132: 98105.
  • 5
    Shannon, J., Ernst, P., Yamauchi, Y., Olivenstein, R., Lemiere, C., Foley, S., Cicora, L. et al., Differences in airway cytokine profile in severe asthma compared to moderate asthma. Chest 2008. 133: 420426.
  • 6
    Fischer, R., Tome, D., McGhee, J. R. and Boyaka, P. N., Th1 and Th2 cells are required for both eosinophil- and neutrophil-associated airway inflammatory responses in mice. Biochem. Biophys. Res. Commun. 2007. 357: 4449.
  • 7
    Monteseirin, J., Neutrophils and asthma. J. Investig. Allergol. Clin. Immunol. 2009. 19: 340354.
  • 8
    Macedo, P., Hew, M., Torrego, A., Jouneau, S., Oates, T., Durham, A. and Chung, K. F., Inflammatory biomarkers in airways of patients with severe asthma compared with non-severe asthma. Clin. Exp. Allergy 2009. 39: 16681676.
  • 9
    Fahy, J. V., Eosinophilic and neutrophilic inflammation in asthma: insights from clinical studies. Proc. Am. Thorac. Soc. 2009. 6: 256259.
  • 10
    Kim, Y., Sung, S. S., Kuziel, W. A., Feldman, S., Fu, S. M. and Rose, C. E., Jr., Enhanced airway Th2 response after allergen challenge in mice deficient in CC chemokine receptor-2 (CCR2). J. Immunol. 2001. 166: 51835192.
  • 11
    Kline, J. N., Kitagaki, K., Businga, T. R. and Jain, V. V., Treatment of established asthma in a murine model using CpG oligodeoxynucleotides. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002. 283: L170L179.
  • 12
    Takaoka, A., Tanaka, Y., Tsuji, T., Jinushi, T., Hoshino, A., Asakura, Y., Mita, Y. et al., A critical role for mouse CXC chemokine(s) in pulmonary neutrophilia during Th type 1-dependent airway inflammation. J. Immunol. 2001. 167: 23492353.
  • 13
    Ashino, S., Wakita, D., Shiohama, Y., Iwakura, Y., Chamoto, K., Ohkuri, T., Kitamura, H. and Nishimura, T., A T(h)17-polarized cell population that has infiltrated the lung requires cells that convert to IFN-γ production in order to induce airway hyperresponsiveness. Int. Immunol. 2010. 22: 503513.
  • 14
    Groneberg, D. A., Quarcoo, D., Frossard, N. and Fischer, A., Neurogenic mechanisms in bronchial inflammatory diseases. Allergy 2004. 59: 11391152.
  • 15
    Mostafa, G. A., Reda, S. M., Abd El-Aziz, M. M. and Ahmed, S. A., Sputum neurokinin A in Egyptian asthmatic children and adolescents: relation to exacerbation severity. Allergy 2008. 63: 12441247.
  • 16
    Kraneveld, A. D. and Nijkamp, F. P., Tachykinins and neuro-immune interactions in asthma. Int. Immunopharmacol. 2001. 1: 16291650.
  • 17
    Lei, Y. H., Barnes, P. J. and Rogers, D. F., Inhibition of neurogenic plasma exudation in guinea-pig airways by CP-96,345, a new non-peptide NK1 receptor antagonist. Br. J. Pharmacol. 1992. 105: 261262.
  • 18
    van der Kleij, H. P., Kraneveld, A. D., Redegeld, F. A., Gerard, N. P., Morteau, O. and Nijkamp, F. P., The tachykinin NK1 receptor is crucial for the development of non-atopic airway inflammation and hyperresponsiveness. Eur. J. Pharmacol. 2003. 476: 249255.
  • 19
    Beresford, I. J., Sheldrick, R. L., Ball, D. I., Turpin, M. P., Walsh, D. M., Hawcock, A. B., Coleman, R. A. et al., GR159897, a potent non-peptide antagonist at tachykinin NK2 receptors. Eur. J. Pharmacol. 1995. 272: 241248.
  • 20
    Hoshino, A., Tsuji, T., Matsuzaki, J., Jinushi, T., Ashino, S., Teramura, T., Chamoto, K. et al., STAT6-mediated signaling in Th2-dependent allergic asthma: critical role for the development of eosinophilia, airway hyper-responsiveness and mucus hypersecretion, distinct from its role in Th2 differentiation. Int. Immunol. 2004. 16: 14971505.
  • 21
    Ashino, S., Wakita, D., Zhang, Y., Chamoto, K., Kitamura, H. and Nishimura, T., CpG-ODN inhibits airway inflammation at effector phase through down-regulation of antigen-specific Th2-cell migration into lung. Int. Immunol. 2008. 20: 259266.
  • 22
    Wegmann, M., Th2 cells as targets for therapeutic intervention in allergic bronchial asthma. Expert Rev. Mol. Diagn. 2009. 9: 85100.
  • 23
    Doherty, T. and Broide, D., Cytokines and growth factors in airway remodeling in asthma. Curr. Opin. Immunol. 2007. 19: 676680.
  • 24
    Herrick, C. A. and Bottomly, K., To respond or not to respond: T cells in allergic asthma. Nat. Rev. Immunol. 2003. 3: 405412.
  • 25
    Kay, A. B., Allergy and allergic diseases. First of two parts. N. Engl. J. Med. 2001. 344: 3037.
  • 26
    Nakajima, H. and Takatsu, K., Role of cytokines in allergic airway inflammation. Int. Arch. Allergy Immunol. 2007. 142: 265273.
  • 27
    Pavord, I. D., Brightling, C. E., Woltmann, G. and Wardlaw, A. J., Non-eosinophilic corticosteroid unresponsive asthma. Lancet 1999. 353: 22132214.
  • 28
    Pavord, I. D., Non-eosinophilic asthma and the innate immune response. Thorax 2007. 62: 193194.
  • 29
    Cohn, L., Elias, J. A. and Chupp, G. L., Asthma: mechanisms of disease persistence and progression. Annu. Rev. Immunol. 2004. 22: 789815.
  • 30
    McGraw, D. W., Forbes, S. L., Kramer, L. A., Witte, D. P., Fortner, C. N., Paul, R. J. and Liggett, S. B., Transgenic overexpression of beta(2)-adrenergic receptors in airway smooth muscle alters myocyte function and ablates bronchial hyperreactivity. J. Biol. Chem. 1999. 274: 3224132247.
  • 31
    Kim, Y. K., Oh, S. Y., Jeon, S. G., Park, H. W., Lee, S. Y., Chun, E. Y., Bang, B. et al., Airway exposure levels of lipopolysaccharide determine type 1 versus type 2 experimental asthma. J. Immunol. 2007. 178: 53755382.
  • 32
    Yang, M., Kumar, R. K. and Foster, P. S., Interferon-gamma and pulmonary macrophages contribute to the mechanisms underlying prolonged airway hyperresponsiveness. Clin. Exp. Allergy 2010. 40: 163173.
  • 33
    Yang, M., Kumar, R. K. and Foster, P. S., Pathogenesis of steroid-resistant airway hyperresponsiveness: interaction between IFN-gamma and TLR4/MyD88 pathways. J. Immunol. 2009. 182: 51075115.
  • 34
    Kanda, A., Driss, V., Hornez, N., Abdallah, M., Roumier, T., Abboud, G., Legrand, F. et al., Eosinophil-derived IFN-gamma induces airway hyperresponsiveness and lung inflammation in the absence of lymphocytes. J. Allergy Clin. Immunol. 2009. 124: 573582, 582.e1–9.
  • 35
    Kirstein, F., Horsnell, W. G., Nieuwenhuizen, N., Ryffel, B., Lopata, A. L. and Brombacher, F., Anisakis pegreffii-induced airway hyperresponsiveness is mediated by gamma interferon in the absence of interleukin-4 receptor alpha responsiveness. Infect. Immun. 2010. 78: 40774086.
  • 36
    Li, J. J., Wang, W., Baines, K. J., Bowden, N. A., Hansbro, P. M., Gibson, P. G., Kumar, R. K. et al., IL-27/IFN-gamma induce MyD88-dependent steroid-resistant airway hyperresponsiveness by inhibiting glucocorticoid signaling in macrophages. J. Immunol. 2010. 185: 44014409.
  • 37
    Hayashi, N., Yoshimoto, T., Izuhara, K., Matsui, K., Tanaka, T. and Nakanishi, K., T helper 1 cells stimulated with ovalbumin and IL-18 induce airway hyperresponsiveness and lung fibrosis by IFN-gamma and IL-13 production. Proc. Natl. Acad. Sci. USA 2007. 104: 1476514770.
  • 38
    Bai, T. R., Zhou, D., Weir, T., Walker, B., Hegele, R., Hayashi, S., McKay, K. et al., Substance P (NK1)- and neurokinin A (NK2)-receptor gene expression in inflammatory airway diseases. Am. J. Physiol. 1995. 269: L309L317.
  • 39
    Billington, C. K. and Penn, R. B., Signaling and regulation of G protein-coupled receptors in airway smooth muscle. Respir. Res. 2003. 4: 2.
  • 40
    Gerthoffer, W. T., Agonist synergism in airway smooth muscle contraction. J. Pharmacol. Exp. Ther. 1996. 278: 800807.
  • 41
    Boot, J. D., de Haas, S., Tarasevych, S., Roy, C., Wang, L., Amin, D., Cohen, J. et al., Effect of an NK1/NK2 receptor antagonist on airway responses and inflammation to allergen in asthma. Am. J. Respir. Crit. Care Med. 2007. 175: 450457.
  • 42
    Schelfhout, V., Van De Velde, V., Maggi, C., Pauwels, R. and Joos, G., The effect of the tachykinin NK(2) receptor antagonist MEN11420 (nepadutant) on neurokinin A-induced bronchoconstriction in asthmatics. Ther. Adv. Respir. Dis. 2009. 3: 219226.
  • 43
    Joos, G. F., Vincken, W., Louis, R., Schelfhout, V. J., Wang, J. H., Shaw, M. J., Cioppa, G. D. and Pauwels, R. A., Dual tachykinin NK1/NK2 antagonist DNK333 inhibits neurokinin A-induced bronchoconstriction in asthma patients. Eur. Respir. J. 2004. 23: 7681.
  • 44
    Van Schoor, J., Joos, G. F., Chasson, B. L., Brouard, R. J. and Pauwels, R. A., The effect of the NK2 tachykinin receptor antagonist SR 48968 (saredutant) on neurokinin A-induced bronchoconstriction in asthmatics. Eur. Respir. J. 1998. 12: 1723.
  • 45
    Anderson, G. P., Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet 2008. 372: 11071119.
  • 46
    Griffiths, M., Neal, J. W. and Gasque, P., Innate immunity and protective neuroinflammation: new emphasis on the role of neuroimmune regulatory proteins. Int. Rev. Neurobiol. 2007. 82: 2955.
  • 47
    Wang, J. and Hauer-Jensen, M., Neuroimmune interactions: potential target for mitigating or treating intestinal radiation injury. Br. J. Radiol. 2007. 1: S41S48.
  • 48
    Bhat, R. and Steinman, L., Innate and adaptive autoimmunity directed to the central nervous system. Neuron 2009. 64: 123132.
  • 49
    Matsuzaki, J., Tsuji, T., Imazeki, I., Ikeda, H. and Nishimura, T., Immunosteroid as a regulator for Th1/Th2 balance: its possible role in autoimmune diseases. Autoimmunity 2005. 38: 369375.
  • 50
    Sekimoto, M., Tsuji, T., Matsuzaki, J., Chamoto, K., Koda, T., Nemoto, K., Degawa, M. et al., Functional expression of the TrkC gene, encoding a high affinity receptor for NT-3, in antigen-specific T helper type 2 (Th2) cells. Immunol. Lett. 2003. 88: 221226.
  • 51
    Mizuta, K., Gallos, G., Zhu, D., Mizuta, F., Goubaeva, F., Xu, D., Panettieri, R. A., Jr. et al., Expression and coupling of neurokinin receptor subtypes to inositol phosphate and calcium signaling pathways in human airway smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2008. 294: L523L534.