SEARCH

SEARCH BY CITATION

References

  • 1
    Sireci, G., Champagne, E., Fournie, J. J., Dieli, F. and Salerno, A., Patterns of phosphoantigen stimulation of human Vgamma9/Vdelta2 T cell clones include Th0 cytokines. Hum. Immunol. 1997. 58: 7082.
  • 2
    Boullier, S., Paoquet, Y., Debord, T., Fournie, J. J. and Gougeon, M. L., Regulation by cytokines (IL-12, IL-15, IL-4 and IL-10) of the Vgamma9Vdelta2T cell response to mycobacterial phosphoantigens in responder and anergic HIV-infected persons. Eur. J. Immunol. 1999. 29: 9099.
  • 3
    Caccamo, N., Battistini, L., Bonneville, M., Poccia, F., Fournie, J. J., Meraviglia, S., Borsellino, G. et al., CXCR5 identifies a subset of Vgamma9Vdelta2T cells which secrete IL-4 and IL-10 and help B cells for antibody production. J. Immunol. 2006. 177: 52905295.
  • 4
    Angelini, D. F., Borsellino, G., Poupot, M., Diamantini, A., Poupot, R., Bernardi, G., Poccia, F. et al., FcgammaRIII discriminates between two subsets of Vgamma9Vdelta2 effector cells with different responses and activation pathways. Blood 2004. 104: 18011807.
  • 5
    Casetti, R., Agrati, C., Wallace, M., Sacchi, A., Martini, F., Martino, A., Rinaldi, A. et al., Cutting edge: TGF-beta1 and IL-15 Induce FOXP3+ gammadelta regulatory T cells in the presence of antigen stimulation. J. Immunol. 2009. 183: 35743577.
  • 6
    Ness-Schwickerath, K. J., Jin, C. and Morita, C. T., Cytokine requirements for the differentiation and expansion of IL-17A- and IL-22-producing human Vgamma2Vdelta2T cells. J. Immunol. 2010. 184: 72687280.
  • 7
    Wu, Y., Wu, W., Wong, W. M., Ward, E., Thrasher, A. J., Goldblatt, D., Osman, M. et al., Human gamma delta T cells: a lymphoid lineage cell capable of professional phagocytosis. J. Immunol. 2009. 183: 56225629.
  • 8
    Brandes, M., Willimann, K. and Moser, B., Professional antigen-presentation function by human gammadelta T Cells. Science 2005. 309: 264268.
  • 9
    von Lilienfeld-Toal, M., Nattermann, J., Feldmann, G., Sievers, E., Frank, S., Strehl, J. and Schmidt-Wolf, I. G., Activated gammadelta T cells express the natural cytotoxicity receptor natural killer p 44 and show cytotoxic activity against myeloma cells. Clin. Exp. Immunol. 2006. 144: 528533.
  • 10
    Kunzmann, V. and Wilhelm, M., Anti-lymphoma effect of gammadelta T cells. Leuk. Lymphoma 2005. 46: 671680.
  • 11
    Bonneville, M. and Scotet, E., Human Vgamma9Vdelta2T cells: promising new leads for immunotherapy of infections and tumors. Curr. Opin. Immunol. 2006. 18: 539546.
  • 12
    Kabelitz, D., Wesch, D. and He, W., Perspectives of gammadelta T cells in tumor immunology. Cancer Res. 2007. 67: 58.
  • 13
    Espinosa, E., Belmant, C., Pont, F., Luciani, B., Poupot, R., Romagne, F., Brailly, H. et al., Chemical synthesis and biological activity of bromohydrin pyrophosphate, a potent stimulator of human gamma delta T cells. J. Biol. Chem. 2001. 276: 1833718344.
  • 14
    Sicard, H., Al Saati, T., Delsol, G. and Fournie, J. J., Synthetic phosphoantigens enhance human Vgamma9Vdelta2T lymphocytes killing of non-Hodgkin's B lymphoma. Mol. Med. 2001. 7: 711722.
  • 15
    Sicard, H., Ingoure, S., Luciani, B., Serraz, C., Fournie, J. J., Bonneville, M., Tiollier, J. et al., In vivo immunomanipulation of V gamma 9V delta 2T cells with a synthetic phosphoantigen in a preclinical nonhuman primate model. J. Immunol. 2005. 175: 54715480.
  • 16
    Chargui, J., Combaret, V., Scaglione, V., Iacono, I., Peri, V., Valteau-Couanet, D., Dubrel, M. et al., Bromohydrin pyrophosphate-stimulated V gamma 9delta2 T cells expanded ex vivo from patients with poor-prognosis neuroblastoma lyse autologous primary tumor cells. J. Immunother. 2010. 33: 591598.
  • 17
    Zhang, Y., Ohyashiki, J. H., Shimizu, N. and Ohyashiki, K., Aberrant expression of NK cell receptors in Epstein–Barr virus-positive gammadelta T-cell lymphoproliferative disorders. Hematology 2010. 15: 4347.
  • 18
    Kunzmann, V., Bauer, E., Feurle, J., Weissinger, F., Tony, H. P. and Wilhelm, M., Stimulation of gammadelta T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 2000. 96: 384392.
  • 19
    Fruchon, S., Poupot, M., Martinet, L., Turrin, C. O., Majoral, J. P., Fournie, J. J., Caminade, A. M. et al., Anti-inflammatory and immunosuppressive activation of human monocytes by a bioactive dendrimer. J. Leukoc. Biol. 2009. 85: 553562.
  • 20
    Huang, Y., de Reynies, A., de Leval, L., Ghazi, B., Martin-Garcia, N., Travert, M., Bosq, J. et al., Gene expression profiling identifies emerging oncogenic pathways operating in extranodal NK/T-cell lymphoma, nasal type. Blood 2010. 115: 12261237.
  • 21
    de Leval, L., Rickman, D. S., Thielen, C., Reynies, A., Huang, Y. L., Delsol, G., Lamant, L. et al., The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood 2007. 109: 49524963.
  • 22
    Leung, W., Iyengar, R., Triplett, B., Turner, V., Behm, F. G., Holladay, M. S., Houston, J. et al., Comparison of killer Ig-like receptor genotyping and phenotyping for selection of allogeneic blood stem cell donors. J. Immunol. 2005. 174: 65406545.
  • 23
    Bonneville, M., O'Brien, R. L. and Born, W. K., Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat. Rev. Immunol. 2010. 10: 467478.
  • 24
    Capietto, A. H., Martinet, L., Cendron, D., Fruchon, S., Pont, F. and Fournie, J. J., Phosphoantigens overcome human TCRVγ9+ gamma delta cell immunosuppression by TGF-beta: relevance for cancer immunotherapy. J. Immunol. 2010. 184: 66806687.
  • 25
    Iwasaki, M., Tanaka, Y., Kobayashi, H., Murata-Hirai, K., Miyabe, H., Sugie, T., Toi, M. et al., Expression and function of PD-1 in human gammadelta T cells that recognize phosphoantigens. Eur. J. Immunol. 2011. 41: 345355.
  • 26
    Brandes, M., Willimann, K., Bioley, G., Levy, N., Eberl, M., Luo, M., Tampe, R. et al., Cross-presenting human gammadelta T cells induce robust CD8+ alphabeta T cell responses. Proc. Natl. Acad. Sci. USA 2009. 106: 23072312.
  • 27
    Meuter, S., Eberl, M. and Moser, B., Prolonged antigen survival and cytosolic export in cross-presenting human gammadelta T cells. Proc. Natl. Acad. Sci. USA 2010. 107: 87308735.
  • 28
    Zhang, Y., Ohyashiki, J. H., Takaku, T., Shimizu, N. and Ohyashiki, K., Transcriptional profiling of Epstein–Barr virus (EBV) genes and host cellular genes in nasal NK/T-cell lymphoma and chronic active EBV infection. Br. J. Cancer 2006. 94: 599608.
  • 29
    de Leval, L., Bisig, B., Thielen, C., Boniver, J. and Gaulard, P., Molecular classification of T-cell lymphomas. Crit. Rev. Oncol. Hematol. 2009. 72: 125143.
  • 30
    Nakagawa, M., Nakagawa-Oshiro, A., Karnan, S., Tagawa, H., Utsunomiya, A., Nakamura, S. et al., Array comparative genomic hybridization analysis of PTCL-U reveals a distinct subgroup with genetic alterations similar to lymphoma-type adult T-cell leukemia/lymphoma. Clin. Cancer Res. 2009. 15: 3038.
  • 31
    Fahrer, A. M., Konigshofer, Y., Kerr, E. M., Ghandour, G., Mack, D. H., Davis, M. M. and Chien, Y. H., Attributes of gammadelta intraepithelial lymphocytes as suggested by their transcriptional profile. Proc. Natl. Acad. Sci. USA 2001. 98: 1026110266.
  • 32
    Shires, J., Theodoridis, E. and Hayday, A. C., Biological insights into TCRgammadelta+ and TCRalphabeta+ intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity 2001. 15: 419434.
  • 33
    Hedges, J. F., Cockrell, D., Jackiw, L., Meissner, N. and Jutila, M. A., Differential mRNA expression in circulating gammadelta T lymphocyte subsets defines unique tissue-specific functions. J. Leukoc. Biol. 2003. 73: 306314.
  • 34
    Meissner, N., Radke, J., Hedges, J. F., White, M., Behnke, M., Bertolino, S., Abrahamsen, M. et al., Serial analysis of gene expression in circulating gamma delta T cell subsets defines distinct immunoregulatory phenotypes and unexpected gene expression profiles. J. Immunol. 2003. 170: 356364.
  • 35
    Richards, M. H. and Nelson, J. L., The evolution of vertebrate antigen receptors: a phylogenetic approach. Mol. Biol. Evol. 2000. 17: 146155.
  • 36
    Hayday, A. C., [gamma][delta] cells: a right time and a right place for a conserved third way of protection. Annu. Rev. Immunol. 2000. 18: 9751026.
  • 37
    Chtanova, T., Newton, R., Liu, S. M., Weininger, L., Young, T. R., Silva, D. G., Bertoni, F. et al., Identification of T cell-restricted genes, and signatures for different T cell responses, using a comprehensive collection of microarray datasets. J. Immunol. 2005. 175: 78377847.
  • 38
    Chen, L., Cencioni, M. T., Angelini, D. F., Borsellino, G., Battistini, L. and Brosnan, C. F., Transcriptional profiling of gamma delta T cells identifies a role for vitamin D in the immunoregulation of the V gamma 9V delta 2 response to phosphate-containing ligands. J. Immunol. 2005. 174: 61446152.
  • 39
    Vermijlen, D., Ellis, P., Langford, C., Klein, A., Engel, R., Willimann, K., Jomaa, H. et al., Distinct cytokine-driven responses of activated blood gammadelta T cells: insights into unconventional T cell pleiotropy. J. Immunol. 2007. 178: 43044314.
  • 40
    Vermijlen, D., Brouwer, M., Donner, C., Liesnard, C., Tackoen, M., Van Rysselberge, M., Twite, N. et al., Human cytomegalovirus elicits fetal gammadelta T cell responses in utero. J. Exp. Med. 2010. 207: 807821.
  • 41
    Stewart, C. A., Walzer, T., Robbins, S. H., Malissen, B., Vivier, E. and Prinz, I., Germ-line and rearranged Tcrd transcription distinguish bona fide NK cells and NK-like gammadelta T cells. Eur. J. Immunol. 2007. 37: 14421452.
  • 42
    Li, L., Leid, M. and Rothenberg, E. V., An early T cell lineage commitment checkpoint dependent on the transcription factor Bcl11b. Science 2010. 329: 8993.
  • 43
    Caccamo, N., Meraviglia, S., Ferlazzo, V., Angelini, D., Borsellino, G., Poccia, F., Battistini, L. et al., Differential requirements for antigen or homeostatic cytokines for proliferation and differentiation of human Vgamma9Vdelta2 naive, memory and effector T cell subsets. Eur. J. Immunol. 2005. 35: 17641772.
  • 44
    Huang, Y., Jin, N., Roark, C. L., Aydintug, M. K., Wands, J. M., Huang, H., O'Brien, R. L. et al., The influence of IgE-enhancing and IgE-suppressive gammadelta T cells changes with exposure to inhaled ovalbumin. J. Immunol. 2009. 183: 849855.
  • 45
    Thedrez, A., Harly, C., Morice, A., Salot, S., Bonneville, M. and Scotet, E., IL-21-mediated potentiation of antitumor cytolytic and proinflammatory responses of human V gamma 9V delta 2T cells for adoptive immunotherapy. J. Immunol. 2009. 182: 34233431.
  • 46
    Yamashiro, H., Yoshizaki, S., Tadaki, T., Egawa, K. and Seo, N., Stimulation of human butyrophilin 3 molecules results in negative regulation of cellular immunity. J. Leukoc. Biol. 2010. 88: 757767.
  • 47
    Martinet, L., Jean, C., Dietrich, G., Fournie, J. J. and Poupot, R., PGE2 inhibits natural killer and gamma delta T cell cytotoxicity triggered by NKR and TCR through a cAMP-mediated PKA type I-dependent signaling. Biochem. Pharmacol. 2010. 80: 838845.
  • 48
    Martinet, L., Fleury-Cappellesso, S., Gadelorge, M., Dietrich, G., Bourin, P., Fournie, J. J. and Poupot, R., A regulatory cross-talk between Vgamma9Vdelta2T lymphocytes and mesenchymal stem cells. Eur. J. Immunol. 2009. 39: 752762.
  • 49
    Prigione, I., Benvenuto, F., Bocca, P., Battistini, L., Uccelli, A. and Pistoia, V., Reciprocal interactions between human mesenchymal stem cells and gammadelta T cells or invariant natural killer T cells. Stem Cells 2009. 27: 693702.
  • 50
    Lin, C. W., Chen, Y. H., Chuang, Y. C., Liu, T. Y. and Hsu, S. M., CD94 transcripts imply a better prognosis in nasal-type extranodal NK/T-cell lymphoma. Blood 2003. 102: 26232631.
  • 51
    Miyazaki, K., Yamaguchi, M., Imai, H., Kobayashi, T., Tamaru, S., Nishii, K., Yuda, M. et al., Gene expression profiling of peripheral T-cell lymphoma including gammadelta T-cell lymphoma. Blood 2009. 113: 10711074.
  • 52
    Compagno, M., Lim, W. K., Grunn, A., Nandula, S. V., Brahmachary, M., Shen, Q., Bertoni, F. et al., Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature 2009. 459: 717721.
  • 53
    Caron, G., Le Gallou, S., Lamy, T., Tarte, K. and Fest, T., CXCR4 expression functionally discriminates centroblasts versus centrocytes within human germinal center B cells. J. Immunol. 2009. 182: 75957602.
  • 54
    Miyara, M., Yoshioka, Y., Kitoh, A., Shima, T., Wing, K., Niwa, A., Parizot, C. et al., Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 2009. 30: 899911.
  • 55
    Dybkaer, K., Iqbal, J., Zhou, G., Geng, H., Xiao, L., Schmitz, A., d'Amore, F. et al., Genome wide transcriptional analysis of resting and IL2 activated human natural killer cells: gene expression signatures indicative of novel molecular signaling pathways. BMC Genomics 2007. 8: 230.
  • 56
    Lebart, L., Morineau, A. and Warwick, K. M., Multivariate Descriptive Statistical Analysis (Correspondence Analysis and Related Techniques for Large Matrices), Chichester John Wiley & Sons, INC., 605 Third Ave., NY, USA, 1984. pp. 304.
  • 57
    Chapman, S., Schenk, P., Kazan, K. and Manners, J., Using biplots to interpret gene expression patterns in plants. Bioinformatics (Oxford, England) 2002. 18: 202204.
  • 58
    Pont, F. and Fournie, J. J., Sorting protein lists with nwCompare: a simple and fast algorithm for n-way comparison of proteomic data files. Proteomics 2010. 10: 10911094.